
3/4/22

1

Chapter 15 – Software Reuse

Chapter 15 Software reuse 117/11/2014

1

Topics covered

² The reuse landscape

² Application frameworks

² Software product lines

² Application system reuse

Chapter 15 Software reuse 217/11/2014

2

Software reuse

² In most engineering disciplines, systems are designed
by composing existing components that have been used
in other systems.

² Software engineering has been more focused on original
development but it is now recognised that to achieve
better software, more quickly and at lower cost, we need
a design process that is based on systematic software
reuse.

² There has been a major switch to reuse-based
development over the past 10 years.

17/11/2014 Chapter 15 Software reuse 3

3

Reuse-based software engineering

² System reuse.
§ Complete systems, which may include several application

programs may be reused.

² Application reuse.
§ An application may be reused either by incorporating it without

change into other or by developing application families.
² Component reuse.

§ Components of an application from sub-systems to single objects
may be reused.

² Object and function reuse.
§ Small-scale software components that implement a single well-

defined object or function may be reused.

17/11/2014 Chapter 15 Software reuse 4

4

Benefits of software reuse

Benefit Explanation
Accelerated development Bringing a system to market as early as possible is

often more important than overall development costs.
Reusing software can speed up system production
because both development and validation time may be
reduced.

Effective use of specialists Instead of doing the same work over and over again,
application specialists can develop reusable software
that encapsulates their knowledge.

Increased dependability Reused software, which has been tried and tested in
working systems, should be more dependable than
new software. Its design and implementation faults
should have been found and fixed.

Chapter 15 Software reuse 517/11/2014

5

Benefits of software reuse

Benefit Explanation

Lower development costs Development costs are proportional to the size of the
software being developed. Reusing software means that
fewer lines of code have to be written.

Reduced process risk The cost of existing software is already known, whereas
the costs of development are always a matter of
judgment. This is an important factor for project
management because it reduces the margin of error in
project cost estimation. This is particularly true when
relatively large software components such as
subsystems are reused.

Standards compliance Some standards, such as user interface standards, can
be implemented as a set of reusable components. For
example, if menus in a user interface are implemented
using reusable components, all applications present the
same menu formats to users. The use of standard user
interfaces improves dependability because users make
fewer mistakes when presented with a familiar interface.Chapter 15 Software reuse 617/11/2014

6

3/4/22

2

Problems with reuse

Problem Explanation
Creating, maintaining,
and using a component
library

Populating a reusable component library and ensuring the
software developers can use this library can be expensive.
Development processes have to be adapted to ensure that
the library is used.

Finding, understanding,
and adapting reusable
components

Software components have to be discovered in a library,
understood and, sometimes, adapted to work in a new
environment. Engineers must be reasonably confident of
finding a component in the library before they include a
component search as part of their normal development
process.

Increased maintenance
costs

If the source code of a reused software system or
component is not available then maintenance costs may be
higher because the reused elements of the system may
become increasingly incompatible with system changes.

Chapter 15 Software reuse 717/11/2014

7

Problems with reuse

Problem Explanation
Lack of tool support Some software tools do not support development with

reuse. It may be difficult or impossible to integrate these
tools with a component library system. The software
process assumed by these tools may not take reuse into
account. This is particularly true for tools that support
embedded systems engineering, less so for object-
oriented development tools.

Not-invented-here
syndrome

Some software engineers prefer to rewrite components
because they believe they can improve on them. This is
partly to do with trust and partly to do with the fact that
writing original software is seen as more challenging than
reusing other people’s software.

Chapter 15 Software reuse 817/11/2014

8

The reuse landscape

Chapter 15 Software reuse 917/11/2014

9

The reuse landscape

² Although reuse is often simply thought of as the reuse of
system components, there are many different
approaches to reuse that may be used.

² Reuse is possible at a range of levels from simple
functions to complete application systems.

² The reuse landscape covers the range of possible reuse
techniques.

17/11/2014 Chapter 15 Software reuse 10

10

The reuse landscape

Chapter 15 Software reuse 11

Design
patterns

Architectural
patterns

Application
frameworks

Software product
lines

Application
system integration ERP systems

Systems of
systems

Configurable
application systems

Legacy system
wrapping

Component-based
software engineering

Model-driven
engineering

Service-oriented
systems

Aspect-oriented
software engineering

Program
generators

Program
libraries

17/11/2014

11

Approaches that support software reuse

Approach Description
Application frameworks Collections of abstract and concrete classes are adapted and

extended to create application systems.

Application system
integration

Two or more application systems are integrated to provide
extended functionality.

Architectural patterns Standard software architectures that support common types of
application system are used as the basis of applications. Described
in Chapters 6, 11 and 17.

Aspect-oriented software
development

Shared components are woven into an application at different
places when the program is compiled. Described in web chapter
31.

Component-based software
engineering

Systems are developed by integrating components (collections of
objects) that conform to component-model standards. Described in
Chapter 16.

Chapter 15 Software reuse 1217/11/2014

12

3/4/22

3

Approaches that support software reuse

Approach Description
Configurable application
systems

Domain-specific systems are designed so that they can be
configured to the needs of specific system customers.

Design patterns Generic abstractions that occur across applications are represented
as design patterns showing abstract and concrete objects and
interactions. Described in Chapter 7.

ERP systems Large-scale systems that encapsulate generic business functionality
and rules are configured for an organization.

Legacy system wrapping Legacy systems (Chapter 9) are ‘wrapped’ by defining a set of
interfaces and providing access to these legacy systems through
these interfaces.

Model-driven engineering Software is represented as domain models and implementation
independent models and code is generated from these models.
Described in Chapter 5.

Chapter 15 Software reuse 1317/11/2014

13

Approaches that support software reuse

Approach Description
Program generators A generator system embeds knowledge of a type of application and

is used to generate systems in that domain from a user-supplied
system model.

Program libraries Class and function libraries that implement commonly used
abstractions are available for reuse.

Service-oriented systems Systems are developed by linking shared services, which may be
externally provided. Described in Chapter 18.

Software product lines An application type is generalized around a common architecture
so that it can be adapted for different customers.

Systems of systems Two or more distributed systems are integrated to create a new
system. Described in Chapter 20.

Chapter 15 Software reuse 1417/11/2014

14

Reuse planning factors

² The development schedule for the software.
§ If time is a factor reuse complete systems than individual

components.

² The expected software lifetime.
§ Long-lifetime systems have high maintenance requirements, not

necessarily satisfied by reusable components (e.g. possibly no
access to source code).

² The background, skills and experience of the
development team.
§ Reuse techniques can be quite complex.

17/11/2014 Chapter 15 Software reuse 15

15

Reuse planning factors

² The criticality of the software and its non-functional
requirements.
§ Critical safety systems require certification by external

regulators. What if the source code is not available or
performance is below expected standards?

² The application domain.
§ For some domains such as medical information systems or

manufacturing, there are generic products that may be reused.

² The execution platform for the software.
§ Some component models such as .NET are specific to Microsoft

platforms.

17/11/2014 Chapter 15 Software reuse 16

16

Application frameworks

Chapter 15 Software reuse 1717/11/2014

17

Framework definition

² “… an integrated set of software artefacts (such as
classes, objects and components) that collaborate to
provide a reusable architecture for a family of related
applications.”

Chapter 15 Software reuse 1817/11/2014

18

3/4/22

4

Application frameworks

² Frameworks are moderately large entities that can be
reused. They are somewhere between system and
component reuse.

² Frameworks are a sub-system design made up of a
collection of abstract and concrete classes and the
interfaces between them.

² The sub-system is implemented by adding components
to fill in parts of the design and by instantiating the
abstract classes in the framework.

17/11/2014 Chapter 15 Software reuse 19

19

Web application frameworks

² Support the construction of dynamic websites as a front-
end for web applications.

² WAFs are now available for all of the commonly used
web programming languages e.g. Java, Python, Ruby,
etc.

² Interaction model is based on the Model-View-Controller
composite pattern.

Chapter 15 Software reuse 2017/11/2014

20

Model-view controller

² System infrastructure framework for GUI design.

² Allows for multiple presentations of an object and
separate interactions with these presentations.

² Essentially, it separates the state from its presentation so
that the state may be updated from each presentation.

² When the data is modified through one of the
presentations, the system model is changed and the
controllers associated with each view update their
presentation.

² MVC framework involves the instantiation of a number of
patterns.

17/11/2014 Chapter 15 Software reuse 21

21

The Model-View-Controller pattern

Chapter 15 Software reuse 2217/11/2014

Model methods

Controller methods View methods

User
inputs

view modification
messages

Model edits

Model queries
and updates

Controller state View state

Model state

22

WAF features

² Security.
§ WAFs may include classes to help implement user authentication (login) and

access.

² Dynamic web pages.
§ Classes are provided to help you define web page templates and to populate

these dynamically from the system database.

² Database support.
§ The framework may provide classes that provide an abstract interface to different

databases.

² Session management.
§ Classes to create and manage sessions (a number of interactions with the

system by a user) are usually part of a WAF.

² User interaction.
§ Most web frameworks now provide AJAX support (Holdener, 2008), which allows

more interactive web pages to be created.
Chapter 15 Software reuse 2317/11/2014

23

Extending frameworks

² Frameworks are generic and are extended to create a more
specific application or sub-system. They provide a skeleton
architecture for the system.

² Extending the framework involves
§ Adding concrete classes that inherit operations from abstract

classes in the framework;
§ Adding methods that are called in response to events that are

recognised by the framework (“callbacks”): the framework
objects, rather than the application-specific objects, are
responsible for control in the system (“inversion of control”).

² Problem with frameworks is their complexity which means
that it takes a long time to use them effectively.

17/11/2014 Chapter 15 Software reuse 24

24

3/4/22

5

Inversion of control in frameworks

Application specific classes

GUI

Database

Event
loop

Callbacks

Event
loop

Platform Event
loop

CallbacksCallbacks

Chapter 15 Software reuse 2517/11/2014

25

Framework classes

² System infrastructure frameworks.
§ Support the development of system infrastructures such as

communications, user interfaces and compilers.

² Middleware integration frameworks.
§ Standards and classes that support component communication

and information exchange.
² Enterprise application frameworks.

§ Support the development of specific types of application such as
telecommunications or financial systems.

17/11/2014 Chapter 15 Software reuse 26

26

Software product lines

Chapter 15 Software reuse 2717/11/2014

27

Software product lines

² Software product lines or application families are
applications with generic functionality that can be
adapted and configured for use in a specific context.

² A software product line is a set of applications with a
common architecture and shared components, with each
application specialized to reflect different requirements.

² Adaptation may involve:
§ Component and system configuration;
§ Adding new components to the system;
§ Selecting from a library of existing components;
§ Modifying components to meet new requirements.

17/11/2014 Chapter 15 Software reuse 28

28

Base systems for a software product line

17/11/2014 Chapter 15 Software reuse 29

Core
components

Configurable application
components

Specialized application components

29

Base applications

² Core components that provide infrastructure support.
These are not usually modified when developing a new
instance of the product line.

² Configurable components that may be modified and
configured to specialize them to a new application.
Sometimes, it is possible to reconfigure these
components without changing their code by using a built-
in component configuration language.

² Specialized, domain-specific components some or all of
which may be replaced when a new instance of a
product line is created.

17/11/2014 Chapter 15 Software reuse 30

30

3/4/22

6

Application frameworks and product lines

² Application frameworks rely on object-oriented features
such as polymorphism to implement extensions. Product
lines need not be object-oriented (e.g. embedded
software for a mobile phone).

² Application frameworks focus on providing technical
rather than domain-specific support. Product lines
embed domain and platform information.

² Product lines often control applications for equipment.

² Software product lines are made up of a family of
applications, usually owned by the same organization.

Chapter 15 Software reuse 3117/11/2014

31

Product line architectures

² Architectures must be structured in such a way to
separate different sub-systems and to allow them to be
modified.

² The architecture should also separate entities and their
descriptions and the higher levels in the system access
entities through descriptions rather than directly.

17/11/2014 Chapter 15 Software reuse 32

32

The architecture of a resource allocation system

Chapter 15 Software reuse 3317/11/2014

User interface

Resource
tracking

Resource policy
control

Resource
allocation

User
authentication

Query
management

Resource database

Resource
delivery

Transaction management

Interaction

I/O management

Resource management

Database management

33

The product line architecture of a vehicle
dispatcher

Chapter 15 Software reuse 3417/11/2014

I/O management
Operator interface

Vehicle status
manager

Incident
logger

Resource managementOperator
authentication

Query
manager

Equipment
database

Map and route
planner

Transaction management

Vehicle database

Incident log

Map database

Vehicle
despatcher

Equipment
manager

Vehicle
locator

Report
generator

Comms system
interface

Database management

Resource management

I/O management

Interaction

34

Vehicle dispatching

² A specialised resource management system where the aim is to
allocate resources (vehicles) to handle incidents.

² Adaptations include:
§ At the UI level, there are components for operator display and

communications;
§ At the I/O management level, there are components that handle

authentication, reporting and route planning;
§ At the resource management level, there are components for

vehicle location and despatch, managing vehicle status and incident
logging;

§ The database includes equipment, vehicle and map databases.

17/11/2014 Chapter 15 Software reuse 35

35

Product line specialisation

² Platform specialization.
§ Different versions of the application are developed for

different platforms.
² Environment specialization.

§ Different versions of the application are created to handle
different operating environments e.g. different types of
communication equipment.

² Functional specialization.
§ Different versions of the application are created for customers

with different requirements.
² Process specialization.

§ Different versions of the application are created to support
different business processes.

17/11/2014 Chapter 15 Software reuse 36

36

3/4/22

7

Product instance development

Elicit
stakeholder

requirements

Choose
closest-fit

system instance
Deliver new

system instance

Renegotiate
requirements

Adapt existing
system

Chapter 15 Software reuse 3717/11/2014

37

Product instance development

² Elicit stakeholder requirements.
§ Use existing family member as a prototype.

² Choose closest-fit family member.
§ Find the family member that best meets the requirements.

² Re-negotiate requirements.
§ Adapt requirements as necessary to capabilities of the

software.
² Adapt existing system.

§ Develop new modules and make changes for family member.
² Deliver new family member.

§ Document key features for further member development.

17/11/2014 Chapter 15 Software reuse 38

38

Product line configuration

² Design time configuration.
§ The organization that is developing the software modifies a

common product line core by developing, selecting or adapting
components to create a new system for a customer.

² Deployment time configuration.
§ A generic system is designed for configuration by a customer or

consultants working with the customer. Knowledge of the
customer’s specific requirements and the system’s operating
environment is embedded in configuration data that are used by
the generic system.

17/11/2014 Chapter 15 Software reuse 39

39

Deployment-time configuration

Configuration
database

System database

Generic system

Configuration
planning tool

Chapter 15 Software reuse 4017/11/2014

40

Levels of deployment time configuration

² Component selection, where you select the modules in a
system that provide the required functionality.

² Workflow and rule definition, where you define workflows
(how information is processed, stage-by-stage) and
validation rules that should apply to information entered
by users or generated by the system.

² Parameter definition, where you specify the values of
specific system parameters that reflect the instance of
the application that you are creating.

Chapter 15 Software reuse 4117/11/2014

41

Application system reuse

Chapter 15 Software reuse 4217/11/2014

42

3/4/22

8

Application system reuse

² An application system product is a software system that
can be adapted for different customers without changing
the source code of the system.

² Application systems have generic features and so can
be used/reused in different environments.

² Application system products are adapted by using built-
in configuration mechanisms that allow the functionality
of the system to be tailored to specific customer needs.
§ For example, in a hospital patient record system, separate input

forms and output reports might be defined for different types of
patient.

Chapter 15 Software reuse 4317/11/2014

43

Benefits of application system reuse

² As with other types of reuse, more rapid deployment of a reliable
system may be possible.

² It is possible to see what functionality is provided by the applications
and so it is easier to judge whether or not they are likely to be
suitable.

² Some development risks are avoided by using existing software.
However, this approach has its own risks, as I discuss below.

² Businesses can focus on their core activity without having to devote
a lot of resources to IT systems development.

² As operating platforms evolve, technology updates may be
simplified as these are the responsibility of the COTS product
vendor rather than the customer.

Chapter 15 Software reuse 4417/11/2014

44

Problems of application system reuse

² Requirements usually have to be adapted to reflect the
functionality and mode of operation of the COTS product.

² The COTS product may be based on assumptions that are
practically impossible to change.

² Choosing the right COTS system for an enterprise can be a
difficult process, especially as many COTS products are not
well documented.

² There may be a lack of local expertise to support systems
development.

² The COTS product vendor controls system support and
evolution.

Chapter 15 Software reuse 4517/11/2014

45

Configurable application systems

² Configurable application systems are generic application
systems that may be designed to support a particular
business type, business activity or, sometimes, a
complete business enterprise.
§ For example, an application system may be produced for

dentists that handles appointments, dental records, patient
recall, etc.

² Domain-specific systems, such as systems to support a
business function (e.g. document management) provide
functionality that is likely to be required by a range of
potential users.

Chapter 15 Software reuse 4617/11/2014

46

COTS-solution and COTS-integrated systems

Configurable application systems Application system integration

Single product that provides the
functionality required by a customer

Several heterogeneous system products
are integrated to provide customized
functionality

Based around a generic solution and
standardized processes

Flexible solutions may be developed for
customer processes

Development focus is on system
configuration

Development focus is on system integration

System vendor is responsible for
maintenance

System owner is responsible for
maintenance

System vendor provides the platform for the
system

System owner provides the platform for the
system

Chapter 15 Software reuse 4717/11/2014

47

ERP systems

² An Enterprise Resource Planning (ERP) system is a
generic system that supports common business
processes such as ordering and invoicing,
manufacturing, etc.

² These are very widely used in large companies - they
represent probably the most common form of software
reuse.

² The generic core is adapted by including modules and
by incorporating knowledge of business processes and
rules.

17/11/2014 Chapter 15 Software reuse 48

48

3/4/22

9

The architecture of an ERP system

System database

Business rules

Purchasing Supply chain Logistics CRM

Processes Processes Processes Processes

Chapter 15 Software reuse 4917/11/2014

49

ERP architecture

² A number of modules to support different business
functions.

² A defined set of business processes, associated with
each module, which relate to activities in that module.

² A common database that maintains information about all
related business functions.

² A set of business rules that apply to all data in the
database.

Chapter 15 Software reuse 5017/11/2014

50

ERP configuration

² Selecting the required functionality from the system.
² Establishing a data model that defines how the organization’s

data will be structured in the system database.

² Defining business rules that apply to that data.

² Defining the expected interactions with external systems.
² Designing the input forms and the output reports generated by

the system.
² Designing new business processes that conform to the

underlying process model supported by the system.

² Setting parameters that define how the system is deployed on
its underlying platform.

Chapter 15 Software reuse 5117/11/2014

51

Integrated application systems

² Integrated application systems are applications that
include two or more application system products and/or
legacy application systems.

² You may use this approach when there is no single
application system that meets all of your needs or when
you wish to integrate a new application system with
systems that you already use.

Chapter 15 Software reuse 5217/11/2014

52

Design choices

² Which individual application systems offer the most
appropriate functionality?
§ Typically, there will be several application system products

available, which can be combined in different ways.

² How will data be exchanged?
§ Different products normally use unique data structures and

formats. You have to write adaptors that convert from one
representation to another.

² What features of a product will actually be used?
§ Individual application systems may include more functionality

than you need and functionality may be duplicated across
different products.

Chapter 15 Software reuse 5317/11/2014

53

An integrated procurement system

Client

Web browser E-mail system

Server

E-commerce
system

Ordering and
invoicing system

E-mail system

Adaptor

Adaptor

Chapter 15 Software reuse 5417/11/2014

54

3/4/22

10

Service-oriented interfaces

² Application system integration can be simplified if a
service-oriented approach is used.

² A service-oriented approach means allowing access to
the application system’s functionality through a standard
service interface, with a service for each discrete unit of
functionality.

² Some applications may offer a service interface but,
sometimes, this service interface has to be implemented
by the system integrator. You have to program a wrapper
that hides the application and provides externally visible
services.

Chapter 15 Software reuse 5517/11/2014

55

Application wrapping

Chapter 15 Software reuse 56

Application
system

Service wrapper

ServicesServices

17/11/2014

56

Application system integration problems

² Lack of control over functionality and performance.
§ Application systems may be less effective than they appear.

² Problems with application system inter-operability.
§ Different application systems may make different assumptions

that means integration is difficult.

² No control over system evolution.
§ Application system vendors not system users control

evolution.

² Support from system vendors.
§ Application system vendors may not offer support over the

lifetime of the product.

17/11/2014 Chapter 15 Software reuse 57

57

Key points

² There are many different ways to reuse software. These range from
the reuse of classes and methods in libraries to the reuse of
complete application systems.

² The advantages of software reuse are lower costs, faster software
development and lower risks. System dependability is increased.
Specialists can be used more effectively by concentrating their
expertise on the design of reusable components.

² Application frameworks are collections of concrete and abstract
objects that are designed for reuse through specialization and the
addition of new objects. They usually incorporate good design
practice through design patterns.

Chapter 15 Software reuse 5817/11/2014

58

Key points

² Software product lines are related applications that are developed
from one or more base applications. A generic system is adapted
and specialized to meet specific requirements for functionality, target
platform or operational configuration.

² Application system reuse is concerned with the reuse of large-scale,
off-the-shelf systems. These provide a lot of functionality and their
reuse can radically reduce costs and development time. Systems
may be developed by configuring a single, generic application
system or by integrating two or more application systems.

² Potential problems with application system reuse include lack of
control over functionality and performance, lack of control over
system evolution, the need for support from external vendors and
difficulties in ensuring that systems can inter-operate.

Chapter 15 Software reuse 5917/11/2014

59

