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Ewcaywyn otn Gswpio Ovpmv/Queuing
Theory.

e AmO T0 7O 16YVPA LoONUATIKA EpyaAELa Y0, TNV
EKTELEGT] TOGOTIKMV OVOADGEWMV.

e Apyikd avartuyOnke yio avaAvon NG GTATIGTIKNC
GUUTEPLPOPAS TOV GLGTNUATOV UETAYDYNC
miepnvov/telephone switching systems aAld €yet
EQOPUOYEC GE TOAAA TPOPALOTO TG OTKTVMGOTG
VTTOAOYIGTOV.



2votnuoato Ovpwv

Mmopovv va ypnotunonotnfovy yio TNV LOVIEAAOTOINGCT JLEPYACLM V, GTL OTOLEG
Ol TEAALTEG YTALVOLV, TEPLILEVOLV TNV GELPO TOLG YLA EELTNPETNGT], EELTNPETOLVTOLL
KOl OLVOLY® POLV.

4.1pomog eELTNPETNONG:

FIFO,LILO, priority without

pushout, random
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['a va avaivBel Eva cOGTNUO TPETEL VO, EIVOL YVOGTA

* 11 cuvaptnon mukvotntog Tbavotntag (probability density
function) deiEng kol n cvvapTNoN TLKVOTNTOC TOOVOTNTOGC
eCuommpémonc (1,2).

* 0 0POUOC TV HOVAd®V eCvanpEtnong (3).

* 0 TPOTOC eCvmMpETNonG (4).

e uEyebog evoldpeonc uvnune (5).

Oa cVYKEVTP®OOVUE GTU GLGTNUATO, UE ATELPO YMDPO UVIUNG,
uo povaoa eEvmmpétnong, FIFO tpomo eGumnpénonc.



2vupoiiouoc A/B/m/IK/IM

A-tuokvotnta ThavOTNTOC TOV YPMNOTOV
LETOCL TOV APIEEMV.

B-mukvotntao mhavotntog Tov ¥povov
eCumnpETNONC .

M-op1OUOC TV LOVAO®V EELTNPETNOTC.
K- yoptrtikdétnta capacity

M- IIAnBvouoc  population



Arrival Process / Service Time / Servers / Max Occupancy

/

Interarrival times t
M = exponential

D = deterministic
G = general
Arrival Rate:
A=1/E[t]

/ f \

Service times X

1 server K customers
M = exponential C Servers unspecified if
D = deterministic infinite unlimited
G = general
Service Rate:
u=1/E[X]

Multiplexer Models: M/M/1/K, M/M/1, M/G/1, M/D/1

Trunking Models:
User Activity:

M/M/clc, M/Glclc
M/M/oo, M/G/ o0

Figure A.7



Eion Ovpwv

M/M/1- yio0 povteEALOTOINGT GLGTNUATOV HE LEYAAO
aptOud amd aveEaptnrovg merldtec (m.y. To TnAepmviKo
cvotnua). Ta wévta eival yvootd (m.y. O apOudc ntelatov
GTNV 0Vpa, 1N uéEon KabvoTEPN O, K.0.K) Kol 01 ADGELS
Tpoc@épmvTan o€ akpiPn avaivtikny popen (closed form).

G/G/1-yioo HOVTEALOTOINGN 7O YEVIKOV CUOTIULATMV.
Ap1PBEC avaAVTIKEG ADGELC OEV Elvall YVOOTEG.

M/D/1
G/D/1



Arrival Rates and Traffic Load

Message,
Packet,
Cell
Arrivals
A(t)

Number of users in system N(t) = A(t) — D(t) —B(t)

Delay Box:
Multiplexer
Switch
Network
L ost or T seconds
Blocked
B(t)

Message,

R Packet,
Cell

Departures
D(t)

Figure A.1
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Time of ntharrival =t + 1, +...+ 1,
Arrival n arrivals 1 1
Rate ~ = - =
T, +1, +...+ 1, Seconds (T 41, +...47,)/N [7]

Arrival Rate = 1/ mean interarrival time ]

Figure A.2




Little’s Law

— T —

A() . Delay Box - D)

N(t)

Figure A3



Little’s Law

A A(t)
Assumes |—lT-6- ------ T 7]_|
f!rst-ln I‘IT'; _____ Te... |
first-out T T D(t)
I_lT ________ T, M
- >
| Poror b
Arrivals  Cc, C, C, |C, |Cq C, C,
Departures C, C C C,Cg Ce G,

Figure A.4



Little’s Formula

A gueuing system with arrival rate A, mean delay E(T) through
the system and an average queue length E(n) is governed by
Little’s Formula:

E(n)=AE(T)

If we consider a system where customers will be blocked then

E(n)=A1(1-P, E(T)



A
- = () -
E(q) =1E(w) ()
y7i
‘ E(n)=AE(T)
E(T) = E(w) + 1/
Average time delay Average wait time  Average service time

The average number of customers E(q) waiting in the queue Is:

E(q) = AE(W) = 2E(T) - L = E(n) - p

7



Arrival Processes

e Deterministic — when interarrival times are
all equal to the same constant

* Exponential — when the interarrival times
are exponential random variables with mean
E[t]=1/A

e P[t>t]=eEll =™ fort>0



Poisson Process
T

- >

I I I .

|At| |At| At time
Consider a small interval At(At —0)
1. The probability of one arrival in the interval At is defined

to be AAt+ 0 (At), A At <<l and A is a specified
proportionality constant.

2. The probability of zero arrivals in At is 1-At + 0(At).

3. Arrivals are memoryless: An arrival (event) in one time
Interval of length At is independent of events in previous
or future intervals.




Poisson Distribution

Taking a larger finite time interval T one can find the probability

of k arrivals In T:
e—/lT

k!

p(k) = (AT)".
The mean or expected value of k arrivals:
E(k) = AT

The variance Is:

oy = E(K)=AT



Distribution Conservation

 [f there are m independent Poisson process
streams of arbitrary arrival rates, A1, A2, ... Am, and

these are merged , the composite stream , is itself a
Poisson process with parameter 1=> 1, .

e Sums of Poisson processes are distribution

conserving. They retain the Poisson property.
A

2 A=Y

i=1



Time between successive arrivals, t

arrivals \
\J

T
<>
|

time

The time between successive arrivals, t, IS an exponentially
distributed random variable i.e. its probability density function
Is as follows:

f()=4e" >0

E(r)=1/A Var(z) =1/ A°



Time between successive arrivals

f.(o) 1

»
P>

1 r

For Poisson arrivals, the time between arrivals is more likely to
be small than large. The probability between 2 successive events
decreases exponentially with the time t between them.



Service Process

service time

queue >
output A

service completions

Following similar arguments as for the arrival process, it can be
observed that the service process Is the complete analogue of the
arrival process. For the case where r, the time between completions,
IS exponentially distributed with mean value 1/u, the completion
times themselves must represent a Poisson Process.



M/M/1 Queue

Infinite buffer Exponential service
Poisson arrivals time with rate

rate A > O R

Figure A.9



The M/M/1 Queue.

Infinite Buffer

single server, with
Poisson arrivals,

exponential service

time statistics and
boisson > ( ) _ > FIFO senvice.
) Exponetnial
arrivals. service

n

The aim is to find the probability of state n at the queue as a
function of time (Pn(t)). The probability Pn (t+At) that the queue
IS In state n at time t+At must be the sum of the mutually exclusive
probabilities that the queue was in states n-1, n, n+1 at time t,

each multiplied by the independent probability of arriving at state
n in the intervening At units of time.



ntl @
Buffer
Occupancy n @ ——» @
State

n-1@

t t+dt
P (t+At) = P, (1)[(L— AAD)(L— LAL) + LALAAL + 0(At)
+ P (D[AAL(L— pAL) + 0(AD)] + P. . (1)[(L— AAL) LAt + O(AL)]

Simplifying, dropping o(At) and expanding as a Taylor series about t a Differential-
Difference equation can be derived:

dl:;]t(t) — _(ﬂ“ + ,Ll) I:)n (t) + ﬂ“Pn—l (t) + zupn+1 (t)

In steady state:

(A+ )P, = AP, + 1P

n+1



Deriving the Equation using
Balance Equations

A
/\ /\ /\ /N /\ /\
e L ® eonl n ® nt+l
\/ \/ \/ N \/ \/
(A+w)Pn = APn-1 +  uPn+l
rate of rate of rate of
leaving entering entering state n
state n state n from state n+1
given the from
systems was state n-1
in state n

with probability
Pn



M/M/1 Queue
State diagrams

1-AAt 1-(A+wAt  1-(h+pAt 1-(v+ WAt 1-(L+wAt  1-(n+ At

%/LAL A AL Q A AL ' A At
N IO ~
HAL MA'[ HAt HAL

Figure A.10



Solution using the Flow Balance Diagram

Surface 2
A
I k
/_\ /_\ /_\ STIN T IINTN
e L ® eonl en ® n+l ®
U \/ U N NP G 4
il

Surface 1

Equating input and output flux around:
e Surface 1:

(A+ )P, = AP, + 1P

n+1
e Surface 2:

1P =P

n+1 n



Solving recursively:
A

P =—PF =K P

“ where = = p Isthe line utilization
P, =p.p.R 7 or traffic intensity.
I:)n = pn I:)O

By utilizing the probability normalization condition > P, =1 :
=P =1-p
=P, =0A-p)p’

The above distribution is called a geometric distribution and it
can only be derived if p<1.



Expected number of customers in M/M/1 queue with infinite
buffer space:

o0

E(n) =" np, =£
n=0 _

E(n)

\j



Extension to Finite Queues.

The queue has a finite maximum queue length N:
P — IOn (1_N/[z) p# 1
n 1_p +
The probability that the queue is full, which is equal to the
Blocking probability is equal to:

5 o_ ot (L= p)
N N +1
1-p

The probability that the queue is empty is equal to:
p 1P
=

1_ION+1




Exponential service
K-1 buffer . )
Poisson arrivals time with rate p

rate A > O >

Figure A9



Relation between Throughput and Load

A=load

> 7 =throughput= A(1-F;)
Queue >

-<
AP, rejected or blocked

y=A1-P)=nul-F)

throughput net arrival  net departure
rate rate

_ C) y=ul-FR)

u

y=A1-F)




N +1

Region of
Congestion.

> >
Normalized 7 A
Throughput 4
1
N

N +1

|

p
Normalized

Load



Queue Performance

As the load of the system increases the throughput
Increases as well.

More customers are blocked.

The average number of customers in the queue
and thus the average wait time increases as well .

At high loads queuing deadlocks can occur and
throughput may drop to zero.

There Is a trade-off in performance.



Nonpreemptive Priority Queuing
Systems

Need to provide priority in many systems:

e Computer systems

o Computer control of telephone digital switching exchanges
« Deadlock prevention in packet switching

Nonpreemptive Priority: Higher priority customers move
ahead of lower priority ones in the queue but do not
preempt lower priority customers already in service.

Preemptive Priority: Interrupt lower priority customers in
service until all higher priority customers are served.




Queuing Networks

For M/M/1 queues, models handling network of queues are
relatively easy. They make use of the so called product form
solution (Jackson Network). Much of the research since 1970s is
devoted to these two problem areas:

-finding conditions for which the product form solution applies.

-developing improved and efficient algorithms for reducing the
computational complexity.

Two generic classes can be considered: open and closed queuing
networks.



Open Queuing Networks

I, routing probability from
node a to node b.

5 <—‘ 4 A4

 Packets enter and leave the network without losses.
* From flow conservation principles
Net arrival rate= Net departure rate
As = Ad
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Consider a portion of the network with M queues:

.
< i
) @ @

— u
" ol

» The Poisson arrival rate at a source is labelled A.

 The symbol rij represents the probability that a packet
(customer) completing service at queue 1 Is routed to queue |.
 The queue service rate at a node 1 is labelled pi .



 Normalization condition:
M
lg + Z I = 1
j=1

 Continuity of flow:
M
ﬂf. = ris/l+z rki/lk
K=1
» Product form solution:

P =TIPM)  P(n)=1-p)pf

 The various queues even though interconnected though the
continuity expression behave as if they are independent. More
remarkably they appear as M/M/1 queues with the familiar
state probability distribution.



M/D/1 M/Er/1 M/M/1 M/H/1
Service Time | Constant Erlang Exponential | Hyperexponential
Coeffi_cignt of 0 <1 1 >1
Variation
E[W]/E[W,yypi] 1/2 1/2<, <1 1 >1

Figure A.13
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