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Transport Layer

 Session multiplexing
 Segmentation
 Flow control (when 

required)
 Connection-oriented 

(when required)
 Reliability (when required)



End-to-End Protocols
• Underlying best-effort network
 drop messages
 re-orders messages
 delivers duplicate copies of a given message
 limits messages to some finite size
 delivers messages after an arbitrarily long delay

• Common end-to-end services
 guarantee message delivery
 deliver messages in the same order they are sent
 deliver at most one copy of each message
 support arbitrarily large messages
 support synchronization
 allow the receiver to flow control the sender
 support multiple application processes on each host



Position of TCP and UDP in 
TCP/IP protocol suite



Simple Demultiplexor (UDP)
• Unreliable and unordered datagram service
• Adds multiplexing
• No flow control
• Endpoints identified by ports
 servers have well-known ports
 see /etc/services on Unix

• Header format

• Optional checksum
 psuedo header + UDP header + data

SrcPort DstPort

ChecksumLength

Data

0 16 31



Reliable vs. Best-Effort 
Comparison



TCP: Overview RFCs: 793, 1122, 1323, 2018, 
2581

• full duplex data:
 bi-directional data flow in 

same connection
 MSS: maximum segment 

size

• connection-oriented:
 handshaking (exchange of 

control msgs) init’s sender, 
receiver state before data 
exchange

• flow controlled:
 sender will not overwhelm 

receiver

• point-to-point:
 one sender, one receiver

• reliable, in-order byte 
steam:
 no “message boundaries”

• pipelined:
 TCP congestion and flow 

control set window size

• send & receive buffers



TCP Overview
• Byte-stream
 app writes bytes
 TCP sends segments
 app reads bytes

• Flow control: keep sender 
from overrunning receiver

• Congestion control: keep 
sender from overrunning 
network

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer
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TCP segment structure



TCP segment structure -
Control field



TCP Connection Management
• How do applications 

initiate a connection?
• One end (server)

registers with the TCP 
layer instructing it to 
“accept” connections at a 
certain port

• The other end (client)
initiates a “connect” 
request which is 
“accept”-ed by the server

• Recall: TCP sender, 
receiver establish 
“connection” before 
exchanging data 
segments

• initialize TCP variables:
 seq. #s
 buffers, flow control info 

(e.g. RcvWindow)



TCP Connection Management 
(cont.)

CTL = Which control bits in the TCP header are set to 1



TCP Connection Management (cont.)
Closing a connection:
client closes socket:
clientSocket.close();

Step 1: client end system sends TCP FIN 
control segment to server

Step 2: server receives FIN, replies with 
ACK. Closes connection, sends FIN.

Step 3: client receives FIN, replies with 
ACK. 
 Enters “timed wait” - will respond 

with ACK to received FINs 

Step 4: server, receives ACK.  
Connection closed. 

Note: with small modification, can 
handle simultaneous FINs.

client server
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TCP seq. #’s and ACKs
• The bytes of data being transferred in each 

connection are numbered by TCP.

• The numbering starts with a randomly generated 
number.

Active participant
(client)

Passive participant
(server)



TCP Round Trip Time and 
Timeout
Q: how to set TCP 

timeout value?
• longer than RTT
 but RTT varies

• too short: premature timeout
 unnecessary 

retransmissions

• too long: slow reaction to 
segment loss

Q: how to estimate RTT?
• SampleRTT: measured time 

from segment transmission 
until ACK receipt
 ignore retransmissions

• SampleRTT will vary, want 
estimated RTT “smoother”
 average several recent 

measurements, not just 
current SampleRTT

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

 Exponential weighted moving average
 influence of past sample decreases exponentially fast
 typical value: α = 0.125



Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr
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TCP Round Trip Time and 
Timeout
Setting the timeout
• EstimatedRTT plus “safety margin”
 large variation in EstimatedRTT -> larger safety margin

• first estimate of how much SampleRTT deviates from 
EstimatedRTT: 

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-β)*DevRTT +                   
β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

Then set timeout interval:



TCP reliable data transfer
• TCP creates reliable data 

transfer service on top of IP’s 
unreliable service

• Pipelined segments

• Cumulative acks

• TCP uses single 
retransmission timer

• Retransmissions are 
triggered by:
 timeout events
 duplicate acks

• Initially consider simplified 
TCP sender:
 ignore duplicate acks
 ignore flow control, congestion 

control



Segment Size
• Set to at most MSS (Maximum Segment Size)
 MSS is the largest segment size that can be sent without IP 

fragmentation

• TCP supports push operation to allow application to 
explicitly send a segment



TCP sender events:
data rcvd from app:
• Create segment with seq #
• seq # is byte-stream 

number of first data byte 
in  segment

• start timer if not already 
running (think of timer as 
for oldest unacked 
segment)

• expiration interval: 
TimeOutInterval 

timeout:
• retransmit segment that 

caused timeout
• restart timer
Ack rcvd:

• If acknowledges previously 
unacked segments
 update what is known to be 

acked
 start timer if there are  

outstanding segments



TCP 
sender
(simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above 
create TCP segment with sequence number NextSeqNum 
if (timer currently not running)

start timer
pass segment to IP 
NextSeqNum = NextSeqNum + length(data) 

event: timer timeout
retransmit not-yet-acknowledged segment with 

smallest sequence number
start timer

event: ACK received, with ACK field value of y 
if (y > SendBase) { 

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer 
} 

}  /* end of loop forever */

Comment:
• SendBase-1: last 
cumulatively 
ack’ed byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is 
acked



TCP: retransmission scenarios
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TCP retransmission scenarios 
(more)
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Silly Window Syndrome
• How aggressively does sender exploit open window?

• Receiver-side solutions
 after advertising zero window, wait for space equal to a 

maximum segment size (MSS)
 delayed acknowledgements

Sender Receiver



Fast  Retransmit
• Time-out period  often 

relatively long:
 long delay before resending 

lost packet

• Detect lost segments via 
duplicate ACKs.
 Sender often sends many 

segments back-to-back
 If segment is lost, there will 

likely be many duplicate 
ACKs.

• If sender receives 3 
ACKs for the same data, 
it supposes that segment 
after ACKed data was 
lost:
 fast retransmit: resend 

segment before timer 
expires



Fast retransmit algorithm:
event: ACK received, with ACK field value of y 

if (y > SendBase) { 
SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer 
} 

else { 
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

a duplicate ACK for 
already ACKed segment

fast retransmit
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TCP Flow Control
• receive side of TCP 

connection has a receive 
buffer:

• speed-matching service: 
matching the send rate to the 
receiving app’s drain rate

• app process may be slow at 
reading from buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control



TCP Flow control: how it works
• spare room in buffer
= RcvWindow

= RcvBuffer-[LastByteRcvd
- LastByteRead]

• Rcvr advertises spare 
room by including value of 
RcvWindow in segments

• Sender limits unACKed
data to RcvWindow
 guarantees receive buffer 

doesn’t overflow



Flow Control



TCP Acknowledgment



Fixed Windowing



Sender buffer

TCP Flow control: Example

Receiver buffer



Sender buffer and sender window

TCP Flow control: Example



Sliding the sender window

TCP Flow control: Example



Expanding the sender window

Shrinking the sender window

TCP Flow control: Example



TCP Flow control: Example
• In TCP, the sender window size is totally controlled 

by the receiver window value.

• However, the actual window size can be smaller if 
there is congestion in the network.

• Some more points about TCP’s Sliding Windows:
 1. The source does not have to send a full window’s worth of 

data.
 2.  The size of the window can be increased or decreased by the 

destination.
 3.  The destination can send an acknowledgment at any time.



Keeping the Pipe Full
• D×B dictates how big the Advertised Window should 

be. 

• Window should be opened enough to allow D×B data 
to be transmitted. 

• Bandwidth & Time Until Wrap Around

• Wrap Around: 32-bit SequenceNum
Bandwidth
T1 (1.5Mbps)
Ethernet (10Mbps)
T3 (45Mbps)
FDDI (100Mbps)
STS-3 (155Mbps)
STS-12 (622Mbps)
STS-24 (1.2Gbps)

Time Until Wrap Around
6.4 hours
57 minutes
13 minutes
6 minutes
4 minutes
55 seconds
28 seconds



Delay-Bandwidth product
• Bytes in Transit: 16-bit AdvertisedWindow 64kB 

max)

• Bandwidth & Delay x Bandwidth Product for 100ms 
RTT

Bandwidth
T1 (1.5Mbps)
Ethernet (10Mbps)
T3 (45Mbps)
FDDI (100Mbps)
STS-3 (155Mbps)
STS-12 (622Mbps)
STS-24 (1.2Gbps)

Delay x Bandwidth Product
18KB
122KB
549KB
1.2MB
1.8MB
7.4MB
14.8MB



Nagle’s Algorithm
• How long does sender delay sending data?
 too long: hurts interactive applications
 too short: poor network utilization
 strategies: timer-based vs self-clocking

• When application generates additional data
 if fills a max segment (and window open): send it
 else
 if there is unack’ed data in transit: buffer it until ACK arrives
 else: send it



TCP ACK generation [RFC 
1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other 
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that 
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative 
ACK, ACKing both in-order segments 

Immediately send duplicate ACK, 
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment startsat lower end of gap



Congestion Control Issues
• Two sides of the same coin
 pre-allocate resources so at to avoid congestion
 control congestion if (and when) is occurs

• Two points of implementation
 hosts at the edges of the network (transport protocol)
 routers inside the network (queuing discipline)

• Underlying service model
 best-effort (assume for now)
 multiple qualities of service (later)

Destination
1.5-Mbps T1 link

Router

Source
2

Source
1

100-Mbps FDDI

10-Mbps Ethernet



Framework
• Connectionless flows
 sequence of packets sent between source/destination pair
 maintain soft state at the routers

• Taxonomy
 router-centric versus host-centric
 reservation-based versus feedback-based
 window-based versus rate-based

Router

Source
2

Source
1

Source
3

Router

Router

Destination
2

Destination
1



Principles of Congestion 
Control
• Congestion:
• informally: “too many sources sending too much data too 

fast for network to handle”
• Formally: “Congestion occurs when number of packets 

transmitted approaches network capacity”
• Objective of congestion control: 
 keep number of packets below level at which performance drops 

off dramatically

• different from flow control!
• manifestations:
 lost packets (buffer overflow at routers)
 long delays (queueing in router buffers)



• Data network is a network of queues

• If arrival rate > transmission rate
 then queue size grows without bound and packet delay goes to 

infinity

• Discard any incoming packet if no buffer available

• Saturated node exercises flow control over neighbors
 May cause congestion to propagate throughout network

Principles of Congestion 
Control



Ideal Performance
• Infinite buffers, no overhead for packet transmission 

or congestion control

• Throughput increases with offered load until full 
capacity

• Packet delay increases with offered load approaching 
infinity at full capacity

• Power = throughput / delay

• Higher throughput results in higher delay



Figure 10.3



Practical Performance
• Finite buffers, non-zero packet processing overhead

• With no congestion control, increased load eventually 
causes moderate congestion: throughput increases at 
slower rate than load

• Further increased load causes packet delays to 
increase and eventually throughput to drop to zero



Figure 10.4



Causes/costs of congestion: scenario 1

• two senders, two 
receivers

• one router, infinite 
buffers 

• no retransmission

• large delays when 
congested

• maximum achievable 
throughput



Causes/costs of congestion: 
scenario 2 
• one router, finite buffers 

• sender retransmission of lost packet

finite shared output 
link buffers

Host A λin : original 
data

Host B

λout

λ'in : original data, plus 
retransmitted data



Causes/costs of congestion: scenario 2
a. always:                   (goodput)

b. “perfect” retransmission only when loss:

c. retransmission of delayed (not lost) packet makes         larger 
(than perfect case) for same

λ
in

λout=

λ
in

λout>

λ
inλout

“costs” of congestion:
 more work (retrans) for given “goodput”
 unneeded retransmissions: link carries multiple copies of pkt
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Causes/costs of congestion: scenario 3• four senders
• multihop paths
• timeout/retransmit

λ
in

Q: what happens as      
and     increase ?λ

in

finite shared output 
link buffers

Host A
λin : original data

Host B

λout

λ'in : original data, plus 
retransmitted data



Causes/costs of congestion: scenario 3

Another “cost” of congestion:
 when packet dropped, any “upstream transmission capacity 

used for that packet was wasted!
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Approaches towards congestion 
control

Implicit end-end 
congestion control:
• no explicit feedback from 
network

• congestion inferred from end-
system observed loss, delay

• approach taken by TCP

Network-assisted 
congestion control:
• routers provide feedback to 
end systems

 single bit indicating 
congestion (SNA, DECbit, 
TCP/IP ECN, ATM)

 explicit rate sender 
should send at

 “backpressure”



Explicit congestion signaling
• Direction
 Backward
 Forward

• Categories
 Binary
 Credit-based
 rate-based



Congestion Avoidance with 
Explicit Signaling
• 2 strategies

• Congestion always occurred slowly, almost always at 
egress nodes 
 forward explicit congestion avoidance

• Congestion grew very quickly in internal nodes and 
required quick action
 backward explicit congestion avoidance



2 Bits for Explicit Signaling
• Forward Explicit Congestion Notification
 For traffic in same direction as received frame
 This frame has encountered congestion

• Backward Explicit Congestion Notification
 For traffic in opposite direction of received frame
 Frames transmitted may encounter congestion



Congestion Control strategies
• Two strategies
 pre-allocate resources so at to avoid congestion
 send data and control congestion if (and when) it occurs

• Two points of implementation
 hosts at the edges of the network (transport protocol)
 routers inside the network (queuing discipline)



Taxonomy
• router-centric versus host-centric
 Attempt to simplify routers

• reservation-based versus Feedback-based
 RSVP requires API and application changes

• window-based versus rate-based
 ATM has rate based algorithms to specify acceptable rates for 

each flow.  Alternatives include congestion indication where 
hosts shrink their window.
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TCP Congestion Control
• Idea
 assumes best-effort network (FIFO or FQ routers) each source 

determines network capacity for itself
 uses implicit feedback
 ACKs pace transmission (self-clocking)

• Challenge
 determining the available capacity in the first place
 adjusting to changes in the available capacity



Figure 12.11 Illustration of Slow 
Start and Congestion Avoidance



Additive Increase/Multiplicative 
Decrease

• Objective: adjust to changes in the available capacity
• New state variable per connection: CongestionWindow
 limits how much data source has in transit

MaxWin = MIN(CongestionWindow, 
AdvertisedWindow)

EffWin = MaxWin - (LastByteSent -
LastByteAcked)

• Idea:
 increase CongestionWindow when congestion goes down
 decrease CongestionWindow when congestion goes up



AIMD (cont)
• Question: how does the source determine whether 

or not the network is congested?

• Answer: a timeout occurs
 timeout signals that a packet was lost
 packets are seldom lost due to transmission error
 lost packet implies congestion



AIMD (cont)

• In practice: increment a little for each ACK
Increment = (MSS * MSS)/CongestionWindow

CongestionWindow += Increment

• Algorithm
– increment CongestionWindow by 

one packet per RTT (linear increase)
– divide CongestionWindow by two 

whenever a timeout occurs 
(multiplicative decrease)

Source Destination



AIMD (cont)
• Trace: sawtooth behavior
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TCP Slow Start
• Objective: determine the available capacity in the 

first place

• When connection begins, CongWin = 1 MSS
 Example: MSS = 500 bytes & RTT = 200 msec
 initial rate = 20 kbps

• available bandwidth may be >> MSS/RTT
 desirable to quickly ramp up to respectable rate

• When connection begins, increase rate exponentially 
fast until first loss event



TCP Slow Start (more)
Host A

RT
T

Host B

time

 Available Window = 
MIN[window, cwnd]

 Start connection with 
cwnd=1

 Double CongWin
every RTT  = =

 Increment cwnd at 
each ACK, to some 
max 

  cwnd= cwnd+1



Slow Start
• Objective: determine the available 

capacity in the first
• Idea:
 begin with CongestionWindow = 1 packet
 double CongestionWindow each RTT 

(increment by 1 packet for each ACK)

Source Destination



Slow Start (cont)
• Exponential growth, but slower than all at once
• Used…
 when first starting connection
 when connection goes dead waiting for timeout

• Trace

• Problem: lose up to half a CongestionWindow’s worth 
of data
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Example trace
• Loss event detected only using timeouts.

• Problem: course grain TCP timeouts lead to idle 
periods

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
Time in seconds

0
10
20
30
40
50
60
70

Value of CongesionWindowtimeout Time when transmit
Initial transmit of 
retransmitted packet

CongestionThreshold



Fast Retransmit and Fast 
Recovery
• Problem: coarse-grain TCP 

timeouts lead to idle 
periods

• Fast retransmit: use 
duplicate ACKs to trigger 
retransmission

Packet 1
Packet 2
Packet 3
Packet 4

Packet 5

Packet 6

Retransmit
packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver



Fast Retransmit and Fast 
Recovery
• Problem: coarse-grain TCP 

timeouts lead to idle periods

• Fast retransmit: use 
duplicate ACKs to trigger 
retransmission



Fast Retransmit and Fast 
Recovery
• Problem: coarse-grain TCP 

timeouts lead to idle periods

• Fast retransmit: use 
duplicate ACKs to trigger 
retransmission



Results

• Fast recovery
 skip the slow start phase
 go directly to half the last successful 
CongestionWindow (ssthresh)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Time (seconds)

70

30
40
50

10



Congestion Avoidance
• TCP’s strategy
 control congestion once it happens
 repeatedly increase load in an effort to find the point at which 

congestion occurs, and then back off

• Alternative strategy
 predict when congestion is about to happen
 reduce rate before packets start being discarded
 call this congestion avoidance, instead of congestion control

• Two possibilities 
 router-centric: DECbit and RED Gateways 
 host-centric: TCP Vegas 



DECbit
• Add binary congestion bit to each packet header

• Router
 monitors average queue length over last busy+idle cycle

 set congestion bit if average queue length > 1
 attempts to balance throughout against delay

Queue length

Current
time

Time
Current

cycle
Previous

cycle
Averaging

interval



End Hosts

• Destination echoes bit back to source

• Source records how many packets resulted in set bit

• If less than 50% of last window’s worth had bit set 
 increase CongestionWindow by 1 packet

• If 50% or more of last window’s worth had bit set 
 decrease CongestionWindow by 0.875 times



Random Early Detection (RED)
• Notification is implicit 
 just drop the packet (TCP will timeout)
 could make explicit by marking the packet

• Early random drop
 rather than wait for queue to become full, drop each arriving 

packet with some drop probability whenever the queue 
length exceeds some drop level



RED Details
• Compute average queue length

AvgLen = (1 - Weight) * AvgLen +
Weight * SampleLen

0 < Weight < 1 (usually 0.002)
SampleLen is queue length each time a packet arrives

MaxThreshold MinThreshold

AvgLen



RED Details (cont)
• Two queue length thresholds

if AvgLen <= MinThreshold then
enqueue the packet

if MinThreshold < AvgLen < MaxThreshold then
calculate probability P
drop arriving packet with probability P

if ManThreshold <= AvgLen then 
drop arriving packet



RED Details (cont)
• Computing probability P

TempP = MaxP * (AvgLen - MinThreshold)/ 
(MaxThreshold - MinThreshold)

P = TempP/(1 - count * TempP)

• Drop Probability Curve
P(drop)

1.0

MaxP

MinThresh MaxThresh

AvgLen



Tuning RED
• Probability of dropping a particular flow’s packet(s) is 

roughly proportional to the share of the bandwidth that 
flow is currently getting

• MaxP is typically set to 0.02, meaning that when the 
average queue size is halfway between the two thresholds, 
the gateway drops roughly one out of 50 packets.

• If traffic id bursty, then MinThreshold should be 
sufficiently large to allow link utilization to be maintained 
at an acceptably high level 

• Difference between two thresholds should be larger than 
the typical increase in the calculated average queue length 
in one RTT; setting MaxThreshold to twice MinThreshold 
is reasonable for traffic on today’s Internet

• Penalty Box for Offenders



Summary: TCP Congestion Control
• When CongWin is below Threshold, sender in 

slow-start phase, window grows exponentially.

• When CongWin is above Threshold, sender is in 
congestion-avoidance phase, window grows linearly.

• When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to Threshold.

• When timeout occurs, Threshold set to 
CongWin/2 and CongWin is set to 1 MSS.



TCP sender congestion control
Event State TCP Sender Action Commentary

ACK receipt 
for previously 
unacked 
data 

Slow Start 
(SS)

CongWin = CongWin + MSS, 
If (CongWin > Threshold)

set state to “Congestion             
Avoidance”

Resulting in a doubling of 
CongWin every RTT

ACK receipt 
for previously 
unacked 
data

Congestion
Avoidance 
(CA) 

CongWin = CongWin+MSS * 
(MSS/CongWin)

Additive increase, resulting 
in increase of CongWin  by 
1 MSS every RTT

Loss event 
detected by 
triple 
duplicate 
ACK

SS or CA Threshold = CongWin/2,      
CongWin = Threshold,
Set state to “Congestion 
Avoidance”

Fast recovery, 
implementing multiplicative 
decrease. CongWin will not 
drop below 1 MSS.

Timeout SS or CA Threshold = CongWin/2,      
CongWin = 1 MSS,
Set state to “Slow Start”

Enter slow start

Duplicate 
ACK

SS or CA Increment duplicate ACK count 
for segment being acked

CongWin and Threshold not 
changed



TCP throughput
• What’s the average throughout ot TCP as a function 

of window size and RTT?
 Ignore slow start

• Let W be the window size when loss occurs.

• When window is W, throughput is W/RTT
• Just after loss, window drops to W/2, throughput to 

W/2RTT. 

• Average throughout: .75 W/RTT

• Average throughput as a function of drop 
probability:  3( )

2
B p

p
=



TCP Throughput
• Example: 1500 byte segments, 100ms RTT, want 10 

Gbps throughput

• Requires window size W = 83,333 in-flight segments

• Throughput in terms of loss rate:

• ➜ L = 2·10-10  Wow

• New versions of TCP for high-speed needed!

LRTT
MSS⋅22.1



Incr: w ← w + a , a =1
Decr:     w ← bw  ,   b = 1/2

f1(k+1)=f1(k)+a     if  f1(k)+f2(k) < B
f1(k+1)=bf1(k)     if  f1(k)+f2(k) >= B

f2(k+1)=f2(k)+a     if  f2(k)+f2(k) < B
f2(k+1)=bf2(k)     if  f1(k)+f2(k) >= B

f2(k+1)-f1(k+1)= f2(k)-f1(k) if f1(k)+f2(k) < B
f2(k+1)-f1(k+1)= b(f2(k)-f1(k)) if f1(k)+f2(k) >= B

TCP Fairness



TCP Flavors 
• TCP-Tahoe
 W=1 adaptation on congestion

• TCP-Reno
 W=W/2 adaptation on fast retransmit, W=1 on timeout

• TCP-newReno
 TCP-Reno + fast recovery

• TCP Vegas
 Uses round-trip time as an early-congestion-feedback 

mechanism
 Reduces losses

• TCP-SACK
 Selective Acknowledgements



TCP Tahoe
• Slow-start

• Congestion control upon time-out. 

• Congestion window reduced to 1 and slow-start 
performed again

• Simple

• Congestion control too aggressive

• It takes a complete timeout interval to detect a packet 
loss and this empties the pipeline



TCP Reno
• Tahoe + Fast re-transmit

• Packet loss detected both through timeouts, and 
through DUP-ACKs

• On receiving 3 DUP-ACKs retransmit packet and 
reduce the ssthresh to half of current window and set 
cwnd to this value. For each DUP-ACK received 
increase cwnd by one. If cwnd larger than number of 
packets in transit send new data else wait. In this 
way the pipe is not emptied.  

• Window cut-down to 1 (and subsequent slow-start) 
performed only on time-out



TCP New-Reno
• TCP-Reno with more intelligence during fast recovery

• In TCP-Reno, the first partial ACK will bring the 
sender out of the fast recovery phase 

• Results in multiple reductions of the cwnd for packets 
lost in one RTT. 

• In TCP New-Reno, partial ACK is taken as an 
indication of another lost packet (which is 
immediately retransmitted). 

• Sender comes out of fast recovery only after all 
outstanding packets (at the time of first loss) are 
ACKed.



TCP SACK
• TCP (Tahoe, Reno, and New-Reno) uses cumulative 

acknowledgements

• When there are multiple losses, TCP Reno and New-
Reno can retransmit only one lost packet per round-
trip time

• SACK enables receiver to give more information to 
sender about received packets allowing sender to 
recover from multiple-packet losses faster



TCP SACK (Example)
• Assume packets 5-25 are transmitted 

• Let packets 5, 12, and 18 be lost

• Receiver sends back a CACK=5, and SACK=(6-11,13-
17,19-25)

• Sender knows that packets 5, 12, and 18 are lost and 
retransmits them immediately



TCP Vegas
• Idea: source watches for some sign that some router's 

queue is building up and congestion will happen soon; 
e.g.,
 RTT is growing
 sending rate flattens



Algorithm
• Let BaseRTT be the minimum of all measured RTTs 

(commonly the RTT of the first packet)
• if not overflowing the connection, then
 ExpectedRate = CongestionWindow / BaseRTT

• source calculates current sending rate (ActualRate) once 
per RTT

• source compares ActualRate with ExpectedRate
 Diff = ExpectedRate – ActualRate
 if Diff < α
 -->increase CongestionWindow linearly 

 else if  Diff >β
 -->decrease CongestionWindow linearly 

 else
 -->leave CongestionWindow unchanged



Algorithm (cont)
• Parameters 

− α = 1 packet
− β = 3 packets

• Even faster retransmit
 keep fine-grained timestamps for each packet 
 check for timeout on first duplicate ACK
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Intuition

Driving on Ice
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Vegas Details
• Value of throughput with no congestion is compared 

to current throughput
• If current difference is smaller, increase window size 

linearly
• If current difference is larger, decrease window size 

linearly
• The change in the Slow Start Mechanism consists of 

doubling the window every other RTT, rather than 
every RTT and of using a boundary in the difference 
between throughputs to exit the Slow Start phase, 
rather than a window size value. 



TCP Performance
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 Link Capacity = 155Mbps, 622Mbps, 2.5Gbps, 5Gbps, 10Gbps,

 Drop-Tail Routers, 0.1BDP Buffer
 5 TCP Connections, 100ms RTT, 1000-Byte Packet Size

Utilization of a link with 5 TCP connections

Cannot fully utilize the 
huge capacity of high-

speed networks!



TCP Congestion Control
• The instantaneous throughput of TCP is controlled by a variable 

cwnd, 
• TCP transmits approximately a cwnd number of packets per RTT 

(Round-Trip Time).

Time (RTT)Slow start Congestion avoidance

Packet loss Packet loss Packet loss
cwnd

Packet loss TCP

cwnd = cwnd + 1 cwnd = cwnd * (1-1/2)



TCP over High-Speed Networks

Packet loss

Time (RTT)Congestion avoidance

Packet loss Packet loss
cwnd

Slow start

Packet loss

 A TCP connection with 1250-Byte packet size and 100ms RTT is 
running over a 10Gbps link (assuming no other connections, and no 

buffers at routers)

100,000 10Gbps

50,000   5Gbps

1.4 hours 1.4 hours 1.4 hours

TCP

big
decrease

slow
increase



STCP (Scalable TCP)
• STCP adaptively increases cwnd, and decreases cwnd by 

1/8.

Packet loss

Time (RTT)Slow start Congestion avoidance

Packet loss Packet loss
cwnd

Packet loss

cwnd = cwnd + 1

cwnd = cwnd + 0.01*cwnd

cwnd = cwnd * (1-1/2)

cwnd = cwnd * (1-1/8)

TCP



HSTCP (High Speed TCP)
• HSTCP adaptively increases cwnd, and adaptively decreases cwnd.
• The larger the cwnd, the larger the increment, and the smaller the 

decrement.

Packet loss

Time (RTT)Slow start Congestion avoidance

Packet loss Packet loss
cwnd

Packet loss

cwnd = cwnd * (1-1/2)

cwnd = cwnd * (1-dec(cwnd))

cwnd = cwnd + 1

cwnd = cwnd + inc(cwnd)

TCP



Some Measurements of Throughput 
CERN -SARA

Standard TCP txlen 100 25 Jan03
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Hispeed TCP txlen 2000 26 Jan03
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Scalable TCP  txlen 2000 27 Jan03
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• High-Speed TCP
– Average Throughput  

345 Mbit/s

• Scalable TCP
– Average 

Throughput  340 
Mbit/s

• Using the GÉANT Backup Link 
– 1 GByte file transfers

– Blue Data
– Red TCP ACKs

• Standard TCP
– Average Throughput  167 Mbit/s

– Users see 5 - 50 Mbit/s!



TCP FAST 

min[2 , (1 ) ( )]baseRTTw w w w
RTT

γ γ α= + − + +

• Packet Losses give binary feedback to the end 
user .

• Binary feedback induces oscillations.
• Need multi-bit feedback to improve 

performance.
• Like TCP Vegas FAST TCP uses delays to 

infer congestion.
• The window is updated as follows. 



SC2002 Network

(Sylvain Ravot, caltech)

OC48

OC192



FAST throughput
(averaged over 1hr)

Linux TCP          Linux TCP              FAST        

92%

txq=100 txq=10000

95%

16%

48%

Linux TCP       Linux TCP             FAST

2G

1G
Average 

utilization

19%

27%



Feedback 

Round Trip Time

Congestion Window

Congestion Header

Feedback            

Round Trip Time

Congestion Window

The XCP Protocol  

Feedback  =               
+ 0.1 packet



Feedback =                
+ 0.1 packet  

Round Trip Time

Congestion Window

Feedback  =                
- 0.3 packet

How does XCP Work?



Congestion Window = Congestion Window + Feedback

Routers compute feedback without 
any per-flow state 

How does XCP Work?

XCP extends ECN and CSFQ



How Does an XCP Router Compute 
the Feedback?
Congestion Controller Fairness Controller

Goal: Divides ∆ between 
flows to converge to fairness

Looks at a flow’s state in 
Congestion Header 

Algorithm:
If ∆ > 0 ⇒ Divide ∆ equally 

between flows
If ∆ < 0 ⇒ Divide ∆ between 
flows proportionally to their 

current rates

MIMD AIMD

Goal: Matches input traffic to 
link capacity & drains the queue

Looks at aggregate traffic & 
queue

Algorithm:
Aggregate traffic changes by ∆

∆ ~ Spare Bandwidth
∆ ~ - Queue Size

So, ∆ = α davg Spare - β Queue

∆Congestion 
Controller

Fairness 
Controller



∆ = α davg Spare - β Queue

2
24

0 2αβπα =<< and

Theorem: System converges 
to optimal utilization (i.e., 

stable) for any link bandwidth, 
delay, number of sources if:

(Proof based on Nyquist 
Criterion)

Getting the devil out of the details …
Congestion Controller Fairness Controller

No Parameter Tuning

Algorithm:
If ∆ > 0 ⇒ Divide ∆ equally between flows

If ∆ < 0 ⇒ Divide ∆ between flows 
proportionally to their current rates

Need to estimate number of 
flows N

∑ ×
=

Tinpkts pktpkt RTTCwndT
N

)/(
1

RTTpkt : Round Trip Time in header 
Cwndpkt : Congestion Window in header

T: Counting Interval

No Per-Flow State



XCP Remains Efficient as 
Bandwidth or Delay Increases

Bottleneck Bandwidth (Mb/s)

Utilization as a function of 
Bandwidth

Round Trip Delay (sec)

Utilization as a function 
of Delay  



XCP Remains Efficient as 
Bandwidth or Delay Increases

Bottleneck Bandwidth (Mb/s)

Utilization as a function of 
Bandwidth  

Round Trip Delay (sec)

Utilization as a function 
of Delay



The ACP protocol



Responses generated by ACP
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