

Outline

- Transport Layer Services
- TCP Overview

- Segment structure
+ Sequence/Acknowledgement numbers
* TCP connection management

- RTT

- acks, events, fast retransmit

- Flow Control

- Congestion Control

« General causes
* TCP cong control (slow start, AIMD)

- TCP Throughput

- TCP versions

Transport Layer

Application

= Session multiplexing

sesElon = Segmentation

UDP .
-?'&dp { Transport Flow control (when

required)
P Network = Connection-oriented
(when required)
Data Link = Reliability (when required)
Ethernet
Physical

End-to-End Protocols

- Underlying best-effort network
* drop messages
* re-orders messages
- delivers duplicate copies of a given message
* limits messages to some finite size
- delivers messages after an arbitrarily long delay

- Common end-to-end services
- guarantee message delivery
- deliver messages in the same order they are sent
- deliver at most one copy of each message
- support arbitrarily large messages
* support synchronization
- allow the receiver to flow control the sender
+ support multiple application processes on each host

Position of TCP and UDP in
TCP/IP protocol suite

Application
layer

Transport
layer

Network
layer

Data link

layer

Physical
layer

SMTP FTP TFTP DNS SNMP BOOTP |
TCP UDP
IGMP || ICMP
IP
ARP || RARP
 — Underlying LAN or WAN _|

technology :I

Simple Demultiplexor (UDP)

- Unreliable and unordered datagram service
- Adds multiplexing
- No flow control

- Endpoints identified by ports
- servers have well-known ports
- see /etc/services on Unix

o
-
[}
w
=

SrcPort DstPort

- Header format Longth Chocksum

- Optional checksum
* psuedo header + UDP header + data

Reliable vs. Best-Effort
Comparison

Best-Effort

Connection Type Connection-oriented

Connectionless

Protocol TCP UDP

Sequencing Yes No

= E-mail = Voice streaming
* File sharing * Video streaming
= Downloading |

TCP Overview RFCs: 793, 1122, 1323, 2018,

2581
- full duplex data: - point-to-point:
* bi-directional data flow in one sender, one receiver
same connection
- MSS: maximum segment - reliable, in-order byte
size steam.

: : * no “message boundaries”
- connection-oriented:

- handshaking (exchange of - pipelined:

control msgs) init’s sender, - TCP congestion and flow
receiver state before data control set window size

exchange

. flow controlled: - send & receive buffers

- sender will not overwhelm
receiver

TCP Overview

- Byte-stream - Flow control: keep sender

: from overrunning receiver
- app writes bytes

. TCP sends segments - Congestion control: keep

sender from overrunning

* app reads bytes network

] 1
[] \Write [] Read

. bytes . bytes
]]

TCP TCP
Send buffer | | Receive buffer |
A
| Segment | | Segment | | Segment |

Transmit segments

TCP segment structure

ﬁ Header

.

Data

Source port address

Destination port address

16 bits 16 bits
Sequence number
32 bits
Acknowledgment number
32 bits
HLEN [Reserved| Y |2 [P | T |S|T Window size
: : rlc|s]|s|y][|i .
4 bits 6 bits glk|h|t|n]|n 16 bits
Checksum Urgent pointer
16 bits 16 bits

Options & padding

TCP segment structure -
Control field

URG: Urgent pointer is valid RST: Reset the connection
ACK: Acknowledgment 1s valid SYN: Synchronize sequence numbers
PSH: Request for push FIN: Terminate the connection

URG ACK PSH RST SYN FIN

TCP Connection Management

- How do applications - Recall: TCP sender,
Initiate a connection? receiver establish

“connection” before

- One end (server) ,
registers with the TCP exchanging data
layer instructing it to segments
“accept” connections at a

, - 1nitialize TCP variables:
certain port

* seq. #s

- The other end (client) - buffers, ﬂovy control info
initiates a “connect” (e.g. RevWindow)
request which 1s
“accept”-ed by the server

TCP Connection Management

(cont.)
Host A Host B
< <

/s 7

@ Send SYN
(SEQ =100 CTL = SYN) T
SYN received
_ / Send SYN, ACK @
SYN received (SEQ = 300 ACK =101 CTL = SYN, ACK)
Established

(SEQ =101 ACK = 301 CTL = ACK) \

CTL = Which control bits in the TCP header are set to 1

TCP Connection Management (cont.)

Closing a connection: client ser'ver'

SR

client closes socket:
clientSocket.close() ;

Step 1: client end system sends TCP FIN

control segment to server

Stgg 2: server receives FIN, replies with NG

K. Closes connection, sends FIN. close

StX 52K3 client receives FIN, replies with

+ Enters “timed wait” - will respond
with ACK to received FINs

=

o

Step 4: server, receives ACK. S

Connection closed. -8

Note: with small modification, can _g

handle simultaneous FINs. A
closed

TCP seq. #s and ACKs

- The bytes of data being transferred in each
connection are numbered by TCP.

- The numbering starts with a randomly generated
number.

Active participant Passive participant
(client) (server)

TCP Round Trip Time and
Timeout

Q: how to set TCP Q: how to estimate RTT?

. ‘? .
timeout value: - SampleRTT: measured time

- longer than RTT from segment transmission
- but RTT varies until ACK receipt

* 1gnore retransmissions
- too short: premature timeout .
- SampleRTT will vary, want

* unnecessary .
estimated RTT “smoother”

retransmissions
- average several recent
- too long: slow reaction to measurements, not just
segment loss current SampleRTT

EstimatedRTT = (1- o) *EstimatedRTT + oa*SampleRTT

O Exponential weighted moving average
O 1nfluence of past sample decreases exponentially fast
O typical value: o = 0.125

Example RTT estimation:

RTT (milliseconds)

350 ~

300

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

250

200 +

150

100

22 29 36 43 50 57 64 71 78 85 92

time (seconnds)

—o— SampleRTT —®—Estimated RTT

99

106

TCP Round Trip Time and
Timeout

Setting the timeout

- EstimatedRTT plus “safety margin”
- large variation in EstimatedRTT -> larger safety margin

- first estimate of how much SampleRTT deviates from
EstimatedRTT: DevRTT = (1-f) *DevRTT +
f*|SampleRTT-EstimatedRTT |

(typically, B = 0.25)

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

TCP reliable data transfer

- TCP creates reliable data
transfer service on top of IP’s
unreliable service

- Pipelined segments
- Cumulative acks

- TCP uses single
retransmission timer

- Retransmissions are

triggered by:
* timeout events
* duplicate acks

- Initially consider simplified

TCP sender:

* 1ignore duplicate acks

- 1gnore flow control, congestion
control

Segment Size

- Set to at most MSS (Maximum Segment Size)

- MSS 1s the largest segment size that can be sent without IP
fragmentation

- TCP supports push operation to allow application to
explicitly send a segment

TCP sender events:

data rcvd from app: timeout;:

- Create segment with seq# - retransmit segment that

, caused timeout
- seq # 1s byte-stream

number of first data byte - restart timer
In segment
5 Ack rcvd:

- If acknowledges previously
unacked segments

- start timer if not already
running (think of timer as
for oldest unacked

seoment - update what 1s known to be
5) acked
- explration interval: - start timer if there are

TimeOutInterval outstanding segments

NextSegNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSegNum
if (timer currently not running)
start timer
pass segment to IP
NextSegNum = NextSegNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer

}

} /* end of loop forever */

TCP

sender
(simplified)

Comment:

- SendBase-1: last
cumulatively
ack'ed byte
Example:

- SendBase-1=71;
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked

TCP: retransmission scenarios

Seq=92
5 S
3 200 =
= X L
l loss s
Seq=g %—
Wj Se_ncljSSSe I
- 3
SendBase 3
X =120 £
P\g\(z’\o %
o
Q
SendBas N
e: 108 © SendBase 1
! ! =120 R premature timeout
time time

lost ACK scenario

TCP retransmission scenarios

=120

?<
SendBase AP\C\‘/

\
y

time
Cumulative ACK scenario

Silly Window Syndrome

- How aggressively does sender exploit open window?

N .

Sender Receiver

\ -

- Recelver-side solutions

- after advertising zero window, wait for space equal to a
maximum segment size (MSS)

 delayed acknowledgements

Fast Retransmit

- Time-out period often
relatively long:

- long delay before resending
lost packet

- Detect lost segments via
duplicate ACKs.

- Sender often sends many
segments back-to-back

- If segment is lost, there will
likely be many duplicate
ACKs.

. If sender receives 3

ACKs for the same data,
1t supposes that segment
after ACKed data was
lost:

- fast retransmit: resend
segment before timer
expires

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y

}

a duplicate ACK for fast retransmit
already ACKed segment

Outline

- Transport Layer Services

- TCP Overview
- Segment structure
* Seq nums
* Tcp connection management
- RTT
- Rtd: acks, events, fast retransmit

- Flow Control

- Congestion Control
+ General causes
+ Tep cong control (slow start, AIMD)

- TCP Throughput

« TCP versions

TCP Flow Control

- receive side of TCP f— RevWindow —f

connection has a receive

buffer: data from
IF

7 / i
/ // application

—"' process
////
b RevBuffr ————#

- speed-matching service:
matching the send rate to the -flow control
recelving app’s drain rate

sender won't overflow

- app process may be slow at receiver's buffer by

reading from buffer transmitting foo much,
too fast

TCP Flow control: how it works

- spare room in buffer

= RcvWindow

= RcvBuffer-[LastByteRcvd f— RevWindow —
- LastByteRead] ////

- Revr advertises spare data from /"’ W é —-aplf:;ﬁf ’
room by including value of 0 / 7

RcvWindow in segments

'|l— RevBuffer —I}

- Sender limits unACKed
data to RevWindow

- guarantees receive buffer
doesn’t overflow

Flow Control

Transmit
[
D>
Sender > Receiver
Not Read
Stop < d Receiver Buffer
Full
Process
Segments

Receiver Buffer
Ready

Go <
Resume Transmission

v

301P_181

v

TCP Acknowledgment

Sender Window Size = 1 Receiver
> 4 > 4
Send 1 > | Receive 1
Send ACK 2
Receive ACK 2 | «
Send 2 » | Receive 2
Send ACK 3
Receive ACK 3 | «
Send 3 » | Receive 3
Send ACK 4

Receive ACK4 | <«

Fixed Windowing

B sender
4

- Send 1
/
Send 2

Send 3

Receive ACK

Send 4
Send 5
Send 6

Receive ACK
Send 7

Window Size = 3

v Vv V¥

v v V¥

Receive 1
Receive 2

Receive 3
Send ACK 4

Send ACK 7

Receiver L
E

~
/

TCP Flow control: Example

Sender buffer
Occupied part of the buffer
= "l sentand
Empty to be sent, not acknowledged,
filled by process| can be sent immediately N :acknowledgecL 5 recycled
211210 (209|208 | 207 | 206 | 205 | 204 | 203 | 202 | 201 | 200

Receiver buffer

Empty, to receive
more bytes from network

-l

i

Next byte to be sent

Occupied part of the buffer
-

Consumed and

recycled

-

-

199

198

197

196

195

194

TCP Flow control: Example

Sender buffer and sender window

Size = receiver window
- >

211210209 | 208 | 207 | 206 | 205 | 204 | 203 | 202 | 201 | 200

i

Next byte to be sent

TCP Flow control: Example

Sliding the sender window

Size = receiver window

-« >
211 (2101209 | 208|207 | 206 | 205 | 204 | 203 | 202 | 201 | 200
i
a. Before
Size = receiver window
- >
211 (2101209 |208 207|206 | 205 (204 | 203

b. After

TCP Flow control: Example

Expanding the sender window

Size = receiver window

<

Y

215

214

213

212

211

210

209

208

207

206

205

i

Shrinking the sender window

il
-

Size = receiver window

.
-

218

217

216

215

214

213

212

211

210

i

TCP Flow control: Example

- In TCP, the sender window size 1s totally controlled
by the receiver window value.

- However, the actual window size can be smaller if
there 1s congestion in the network.

- Some more points about TCP’s Sliding Windows:
* 1. The source does not have to send a full window’s worth of
data.

+ 2. The size of the window can be increased or decreased by the
destination.

3. The destination can send an acknowledgment at any time.

Keeping the Pipe Full

- DXB dictates how big the Advertised Window should

be.

- Window should be opened enough to allow DXB data

to be transmitted.

- Bandwidth & Time Until Wrap Around

- Wrap Around: 32-bit SequenceNum

Bandwidth Time Until Wrap Around
T1 (1.5Mbps) 6.4 hours

Ethernet (10Mbps) 57 minutes

T3 (45Mbps) 13 minutes

FDDI (100Mbps) 6 minutes

STS-3 (155Mbps) 4 minutes

STS-12 (622Mbps) 55 seconds

STS-24 (1.2Gbps) 28 seconds

Delay-Bandwidth product

- Bytes 1n Transit: 16-bit AdvertisedWindow 64kB
max)

- Bandwidth & Delay x Bandwidth Product for 100ms
RTT

Bandwidth Delay x Bandwidth Product
T1 (1.5Mbps) 18KB

Ethernet (10Mbps) | 122KB

T3 (45Mbps) 549KB

FDDI (100Mbps) | 1.2MB
STS-3 (155Mbps) | 1.8MB
STS-12 (622Mbps) | 7.4MB
STS-24 (1.2Gbps) | 14.8MB

Nagle’s Algorithm

- How long does sender delay sending data?
* too long: hurts interactive applications
* too short: poor network utilization
- strategies: timer-based vs self-clocking

- When application generates additional data
- 1f fills a max segment (and window open): send it

- else
- 1f there 1s unack’ed data in transit: buffer it until ACK arrives
« else: send 1t

TCP ACK generation [RFC
1122, RFC 2581]

Event at Receiver TCP Receiver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

Arrival of segment that Immediate send ACK, provided that

partially or completely fills gap segment startsat lower end of gap

Congestion Control Issues

- Two sides of the same coin
 pre-allocate resources so at to avoid congestion
- control congestion if (and when) 1s occurs

L1 L1 [o
»| Destination
1.5-Mbps T1 link

- Two points of implementation
- hosts at the edges of the network (transport protocol)
* routers inside the network (queuing discipline)

- Underlying service model
* best-effort (assume for now)
- multiple qualities of service (later)

Framework

- Connectionless flows
- sequence of packets sent between source/destination pair
- maintain soft state at the routers

Router
Destination
1

Router

Destination
2

- Taxonomy
« router-centric versus host-centric
- reservation-based versus feedback-based
- window-based versus rate-based

Principles of Congestion
Control

- Congestion:

- iInformally: “too many sources sending too much data too
fast for network to handle”

- Formally: “Congestion occurs when number of packets
transmitted approaches network capacity”

- Objective of congestion control:

- keep number of packets below level at which performance drops
off dramatically

. different from flow control!

- manifestations:
- lost packets (buffer overflow at routers)
* long delays (queueing in router buffers)

Principles of Congestion
Control

- Data network 1s a network of queues

- If arrival rate > transmission rate

- then queue size grows without bound and packet delay goes to
infinity

- Discard any incoming packet if no buffer available

- Saturated node exercises flow control over neighbors
- May cause congestion to propagate throughout network

Ideal Performance

- Infinite buffers, no overhead for packet transmission
or congestion control

- Throughput increases with offered load until full
capacity

- Packet delay increases with offered load approaching
infinity at full capacity

- Power = throughput / delay
- Higher throughput results in higher delay

10—

Normalized Throoghpot

0.5 —
L I T 1
[y 0.5 L 15
Normalized Load
Fy
&
T T I
(X 18 1 1.5
Mormalired Load
z
E
B
I | I
(X1 (18] 1L 15
Normalzed Load

Figure 10.3

Ideal Network Utilization

Practical Performance

- Finite buffers, non-zero packet processing overhead

- With no congestion control, increased load eventually
causes moderate congestion: throughput increases at
slower rate than load

- Further increased load causes packet delays to
increase and eventually throughput to drop to zero

Normalized Thronehput

Delay

Moderate
Mo congestion congestion Severe conpestion

Figure 10.4 The Effects of Congestion

Causes/costs of congestion: scenario 1

- two senders, two
receivers

- one router, infinite

buffers

- NO retransmission

Cl2+

7Lou’r

C/2
7\'in

- large delays when

congested

- maximum achievable

throughput

delay

C/2
7\'in

Causes/costs of congestion:
scenario 2

- one router, finite buffers

- sender retransmission of lost packet

Host A Ay - original Aou

data
A, »original data, plus A
retransmitted data

finite shared output
link buffers

7"out

Causes/costs of congestion: scenario 2

a. always:kin= }\“out (goodput)

b.

R/2

“costs” of congestion:

/
“perfect” retransmission only when loss: }Lin> A

out

retransmission of delayed (not lost) packet makes 7\,,” larger

(than perfect case) for same Vgt

M

n

a

R/2

7\'out

R/2

R/3

R/2

R/2

O more work (retrans) for given “goodput”

R/2

O unneeded retransmissions: link carries multiple copies of pkt

Causes/costs of congestion: scenario 3

| Q: what happens as kin
+ multihop paths and A’ increase ?
- timeout/retransmit n
rostA A, : original data Rout

A", »original data, plus
retransmitted data

finite shared output
lipk buffers

Host B

Causes/costs of congestion: scenario 3
C/2 i

5
(<O 1

Ain

Another "cost” of congestion:

O when packet dropped, any “upstream transmission capacity
used for that packet was wasted!

Approaches towards congestion
control

Implicit end-end Network-assisted
congestion control: congestion control:
- no explicit feedback from - routers provide feedback to
network end systems

o - single bit indicating
- congestion inferred from end- congestion (SNA, DECbit
system observed loss, delay TCP/IP ECN A’I:M) ’
. approach taken by TCP ¢ eXp11C1t rate Sender

should send at
* “backpressure”

Explicit congestion signaling

- Direction
- Backward
« Forward

- Categories
- Binary
* Credit-based
- rate-based

Imphctt
_ (delay, discard)

g_'!' o Poliing_

Source

Explicit
i {binary, credit, rake)

Figure 10.5 Mechanisms for Congestion Control

Destination

Congestion Avoidance with
Explicit Signaling

- 2 strategies

- Congestion always occurred slowly, almost always at
egress nodes
- forward explicit congestion avoidance

- Congestion grew very quickly in internal nodes and
required quick action
- backward explicit congestion avoidance

2 Bits for Explicit Signaling

- Forward Explicit Congestion Notification
* For traffic in same direction as received frame
 This frame has encountered congestion

- Backward Explicit Congestion Notification
- For traffic in opposite direction of received frame
- Frames transmitted may encounter congestion

Congestion Control strategies

- Two strategies
* pre-allocate resources so at to avoid congestion
- send data and control congestion if (and when) it occurs

- Two points of implementation
* hosts at the edges of the network (transport protocol)
* routers inside the network (queuing discipline)

Taxonomy

- router-centric versus host-centric
- Attempt to simplify routers

- reservation-based versus Feedback-based
- RSVP requires API and application changes

- window-based versus rate-based

- ATM has rate based algorithms to specify acceptable rates for
each flow. Alternatives include congestion indication where
hosts shrink their window.

Outline

- Transport layer Services
- TCP Overview

- Segment structure
* Seq nums
* Tcp connection management
- RTT
- Rtd: acks, events, fast retransmit

- Flow Control

- Congestion Control

« General causes
* Tcp cong control (slow start, AIMD)

- TCP Throughput

- TCP versions

TCP Congestion Control

- Idea
- assumes best-effort network (FIFO or FQ routers) each source
determines network capacity for itself

- uses 1implicit feedback
- ACKSs pace transmission (self-clocking)

- Challenge
- determining the available capacity in the first place
- adjusting to changes in the available capacity

5 6 7 8 9 10 11 12 13 14 15 16

e e

Round-trip times

Figure 12,11 lustration of Slow Start and Congestion Avoidance

Additive Increase/Multiplicative
Decrease

- Objective: adjust to changes in the available capacity

- New state variable per connection: CongestionWindow
* limits how much data source has 1n transit

MaxWin = MIN (CongestionWindow,
AdvertisedWindow)

EffWin = MaxWin - (LastByteSent -
LastByteAcked)

- Idea:

* Increase CongestionWindow when congestion goes down
 decrease CongestionWindow when congestion goes up

AIMD (cont)

- Question: how does the source determine whether
or not the network 1s congested?

- Answer: a timeout occurs
- timeout signals that a packet was lost
- packets are seldom lost due to transmission error
- lost packet implies congestion

AIMD (cont)

* Algorithm
— increment CongestionWindow by
one packet per RTT (linear increase)

Source Destination

— divide CongestionWindow by two
whenever a timeout occurs
(multiplicative decrease)

- In practice: increment a little for each ACK

Increment = (MSS * MSS) /CongestionWindow

CongestionWindow += Increment

AIMD (cont)

- Trace: sawtooth behavior

70
60
50

., 40

X 30
20
10 ~

T T T T T
1.0 2.0 3.0 4.0 5.0

Time (seconds)

T
6.0

T
7.0

T
8.0

TCP Slow Start

- Objective: determine the available capacity in the
first place

- When connection begins, CongWin = 1 MSS

- Example: MSS = 500 bytes & RTT = 200 msec
- 1initial rate = 20 kbps

- available bandwidth may be >> MSS/RTT

- desirable to quickly ramp up to respectable rate

- When connection begins, increase rate exponentially
fast until first loss event

TCP Slow Start (more)

3 Available Window =
MIN[window, cwnd]

J Start connection with
cwnd=1

3 Double CongWin
every RT

O Increment cwnd at
each ACK, to some
max

3 =» cwnd= cwnd+1

Slow Start

Source Destination

- Objective: determine the available
capacity in the first

 Idea:

* begin with CongestionWindow = 1 packet

* double CongestionWindow each RTT
(increment by 1 packet for each ACK)

0’0/ N

i

o
0
il
i
il

[
i

Slow Start (cont)

- Exponential growth, but slower than all at once

- Used...

- when first starting connection
- when connection goes dead waiting for timeout

- Trace

70 — i LN T AT mHHHHHHH\HHHHHHHHH\HHHHHHHHHH\H\HHH 1\HHHHHHHHH\HHHHHHHHHH |
60
50
o 40-
X 30 -
20
10

T T
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Time (seconds)

- Problem: lose up to half a CongestionWindow’s worth
of data

KB

Example trace

- Loss event detected only using timeouts.

- Problem: course grain TCP timeouts lead to 1dle

periods
Value of CongesionWindow

timeout Time when transmit
Initial transmit of
retransmitted packet
70—yt WH A A WHIHHHll\Hlllﬁll\l\llﬁlﬂl\\lllﬁ Tt THHHHH%HHH&H&HHWHHW—#
60 J= === m=———= =
50 - i ./
a0 - ! \//\A
30 |
20
|
10 e e s © At
I 4[N | i S— | — -- 7‘
1.0 2.0 3.0 4.0 5.0 6.0 I 7.0 8.0 9.0

Time in seconds

ConoestionThreshold

Fast Retransmit and Fast
Recovery

. Sender Receiver
- Problem: coarse-grain TCP Packet
timeouts lead to 1dle Packet 2 oK
. Packet 3
periods N R ACK 2
- Fast retransmit: use Backet 5 ACK 2
duplicate ACKs to trigger Packet 6
retransmission Ackz
ACK 2

Retransmit
packet 3

ACK 6

Fast Retransmit and Fast

Slow Start and Additive Increase

Recovery e

. Problem: coarse-grain TCP | ;5| coooreememermeeeeeeeee e
timeouts lead to idle periods P ——————ai

- Fast retransmit: use
duplicate ACKs to trigger
retransmission

Additive
Increase

—— i —————————————————————————]

Multiplicative Decrease
Threshold set to 10

Slow Start and Additive Increasel and the cycle is repeated

Additive
Increase

Fast Retransmit and Fast
Recovery -

640

- Problem: coarse-grain TCP
timeouts lead to 1dle periods

620

8004

segment number

- Fast retransmit: use
duplicate ACKs to trigger | -
retransmission oo, | | € tme (secs)

40000

cwnd (bytes)
S
2

20000

10000

8.3 5.4 5.5 5.6 time (secs)

Results |

70— I Ly A R A

60
50
© 40 -
30
20

T T T T |
1.0 2.0 3.0 4.0 5.0 6.0 7.0

Time (seconds)

- Fast recovery
- skip the slow start phase

- go directly to half the last successful
CongestionWindow (ssthresh)

Congestion Avoidance

- TCP’s strategy

- control congestion once 1t happens

* repeatedly increase load in an effort to find the point at which
congestion occurs, and then back off

- Alternative strategy
- predict when congestion 1s about to happen
- reduce rate before packets start being discarded
- call this congestion avoidance, instead of congestion control

- Two possibilities
* router-centric: DECbit and RED Gateways
* host-centric: TCP Vegas

DECDbit

- Add binary congestion bit to each packet header

- Router
- monitors average queue length over last busy+idle cycle

Queue length
A

Current
time

= Time

Previous Current
cycle cycle
Averaging
interval

o
L

- set congestion bit if average queue length > 1
- attempts to balance throughout against delay

End Hosts

- Destination echoes bit back to source
- Source records how many packets resulted in set bit

. If less than 50% of last window’s worth had bit set

* Increase CongestionWindow by 1 packet

- If 50% or more of last window’s worth had bit set
- decrease CongestionWindow by 0.875 times

Random Early Detection (RED)

- Notification is implicit
* just drop the packet (TCP will timeout)
- could make explicit by marking the packet

- Early random drop

- rather than wait for queue to become full, drop each arriving
packet with some drop probability whenever the queue
length exceeds some drop level

RED Details

- Compute average queue length
Avglen = (1 - Weight) * Avglen +
Weight * Samplelen
0 <Weight < 1 (usually 0.002)
SampleLen is queue length each time a packet arrives

MaxThreshold MinThreshold

AvglLen

RED Details (cont)

- Two queue length thresholds

if Avglen <= MinThreshold then
enqueue the packet
if MinThreshold < AvglLen < MaxThreshold then
calculate probability P
drop arriving packet with probability P
if ManThreshold <= AvgLen then
drop arriving packet

RED Details (cont)

- Computing probability P

TempP = MaxP * (AvgLen - MinThreshold)/
(MaxThreshold - MinThreshold)

P = TempP/ (1 - count * TempP)

- Drop Probability Curve

P(drop)
A

MaxP |-
/ AvglLen
' >

MinThresh MaxThresh

Tuning RED

Probability of dropping a particular flow’s packet(s) 1s
roughly proportional to the share of the bandwidth that
flow 1s currently getting

- MaxP 1s typically set to 0.02, meaning that when the

average queue size 1s halfway between the two thresholds,
the gateway drops roughly one out of 50 packets.

- If traffic 1d bursty, then MinThreshold should be

sufficiently large to allow link utilization to be maintained
at an acceptably high level

- Difference between two thresholds should be larger than

the typical increase 1n the calculated ave.ra%\(/e[.queue length
1n one RTT; setting MaxThreshold to twice MinThreshold
1s reasonable for traffic on today’s Internet

- Penalty Box for Offenders

Summary: TCP Congestion Control

- When CongWin i1s below Threshold, sender in
slow-start phase, window grows exponentially.

- When CongWin is above Threshold, sender 1s in
congestion-avoidance phase, window grows linearly.

- When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to Threshold.

- When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

TCP sender congestion control

Event State TCP Sender Action Commentary

ACK receipt | Slow Start | CongWin = CongWin + MSS, Resulting in a doubling of
for previously | (SS) If (CongWin > Threshold) CongWin every RTT
unacked set state to “Congestion
data Avoidance”
ACK receipt | Congestion | CongWin = CongWin+MSS * Additive increase, resulting
for previously | Avoidance | (MSS/CongWin) in increase of CongWin by
unacked (CA) 1 MSS every RTT
data
Loss event SS or CA Threshold = CongWin/2, Fast recovery,
detected by CongWin = Threshold, implementing multiplicative
triple Set state to “Congestion decrease. CongWin will not
duplicate Avoidance” drop below 1 MSS.
ACK
Timeout SS or CA Threshold = CongWin/2, Enter slow start

CongWin =1 MSS,

Set state to “Slow Start”
Duplicate SS or CA Increment duplicate ACK count | CongWin and Threshold not
ACK for segment being acked changed

TCP throughput

- What’s the average throughout ot TCP as a function
of window size and RTT?
* Ignore slow start

- Let W be the window size when loss occurs.

- When window 1s W, throughput 1s W/RTT

- Just after loss, window drops to W/2, throughput to
W/2RTT.

- Average throughout: .76 W/RTT

- Average throughput as a function of drop

probability: B(p)= \/z
2p

TCP Throughput

- Example: 1500 byte segments, 100ms RTT, want 10
Gbps throughput

- Requires window size W = 83,333 in-flight segments

- Throughput in terms of loss rate:

1.22 - MSS

RTTA/L
= L=2101 Wow

- New versions of TCP for high-speed needed!

TCP Fairness

Flow 2 Incr: wW—w+a,ka-=1
N+ Decr: w«—bw , b=1/2

Fi(ke1)=fl(K)+a if f1(k)}+f2(K) < B
Fl(ke1)=bfi(k) if fl(K)+f2(k)>= B

Bandwidth Limit Line

f2(k+1)=f2(k)+a if f2(k)+f2(k)<B
_ . Eftney Line F2(ke1)=bf2(k) if fl(k)+f2(k)>= B
XXk Hlowil fF2(k+1)-F1(k+1)= F2(K)-F1(K) if F1(K)+F2(K) < B
£2(k1)-F(k+1)= b(F2(K)-F1(K)) if F1(k)+f2(k) >= B

TCP Flavors

- TCP-Tahoe

- W=1 adaptation on congestion

- TCP-Reno

- W=W/2 adaptation on fast retransmit, W=1 on timeout

« TCP-newReno

- TCP-Reno + fast recovery

- TCP Vegas

- Uses round-trip time as an early-congestion-feedback
mechanism

- Reduces losses

- TCP-SACK

- Selective Acknowledgements

TCP Tahoe

- Slow-start
- Congestion control upon time-out.

- Congestion window reduced to 1 and slow-start
performed again

- Simple
- Congestion control too aggressive

- It takes a complete timeout interval to detect a packet
loss and this empties the pipeline

TCP Reno

- Tahoe + Fast re-transmit

- Packet loss detected both through timeouts, and
through DUP-ACKs

- On receiving 3 DUP-ACKSs retransmit packet and
reduce the ssthresh to half of current window and set
cwnd to this value. For each DUP-ACK received
increase cwnd by one. If cwnd larger than number of
packets 1n transit send new data else wait. In this
way the pipe 1s not emptied.

- Window cut-down to 1 (and subsequent slow-start)
performed only on time-out

TCP New-Reno

- TCP-Reno with more intelligence during fast recovery

- In TCP-Reno, the first partial ACK will bring the
sender out of the fast recovery phase

- Results in multiple reductions of the cwnd for packets
lost in one RT'T.

- In TCP New-Reno, partial ACK i1s taken as an
indication of another lost packet (which is
1mmediately retransmitted).

- Sender comes out of fast recovery only after all

outstanding packets (at the time of first loss) are
ACKed.

TCP SACK

- TCP (Tahoe, Reno, and New-Reno) uses cumulative
acknowledgements

- When there are multiple losses, TCP Reno and New-
Reno can retransmit only one lost packet per round-
trip time

- SACK enables receiver to give more information to
sender about received packets allowing sender to
recover from multiple-packet losses faster

TCP SACK (Example)

- Assume packets 5-25 are transmitted
- Let packets 5, 12, and 18 be lost

- Receiver sends back a CACK=5, and SACK=(6-11,13-
17,19-25)

- Sender knows that packets 5, 12, and 18 are lost and
retransmits them immediately

TCP Vegas

- Idea: source watches for some sign that some router's
queue 1s building up and congestion will happen soon;
e.g.,

- RTT 1s growing
- sending rate flattens

Algorithm

- Let BaseRTT be the minimum of all measured RTTs
(commonly the RTT of the first packet)

- 1f not overflowing the connection, then
« ExpectedRate = CongestionWindow / BaseRTT

- source calculates current sending rate (ActualRate) once
per RTT

- source compares ActualRate with ExpectedRate
- Diff = ExpectedRate — ActualRate
- if Diff < o
+ -->Increase CongestionWindow linearly
- else if Diff >
+ -->decrease CongestionWindow linearly
- else
+ -->]eave CongestionWindow unchanged

Algorithm (cont)

- Parameters
— a =1 packet
- B= 3 packets ¢

70 P M FHEREEEEETETEEE RO OO RN DO RN RN OOREE TATETRRE O OOREE OO OARERRRREOEE OOCRONE OO AR IO SO OO0 A RO AR TORORE SOOI TR SRR i1l

I I I I I I I I I I I I I I I I
05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8.0
Time (seconds)

240 -
200 -
2 160 -
€ 120 -
80 -
40 -

0.|5 1!0 1.I5 2.|0 2.|5 3.|0 3.|5 4.|0 4.|5 5.|0 5.I5 6.|0 6!5 7!0 7!5 8!0
. Time (seconds)
- Even faster retransmit

- keep fine-grained timestamps for each packet
* check for timeout on first duplicate ACK

Intuition

70 = LR n .II [IR O TR TR R TR TR T A0 TN AEVRR COVE @ 4L
60
-
m g
X 30
20
10
T f T T T T T T T T T T]
05 10 15 20 25 30 35 40 4 0 65 70 75 8.0 85
Time (second
Con indow
81100:
@ 900
o]
5 900
S 300
® 100+ P
T | [[I [[| T [[T |
05 10 15 20 25 3.0 35 40 4 0 65 70 75 80 85
Time (second
Avera rate at source
o) _
= 10
e
£
N 54
(7]
()
>
()
8 T T [[T [[T T [[T 1
05 10 15 20 25 3.0 35 40 4 0 65 70 75 80 85

Time (seconds)

Driving on Ice Average Q length in router

Vegas Details

- Value of throughput with no congestion is compared
to current throughput

o If current difference 1s smaller, increase window size
linearly

- If current difference i1s larger, decrease window size
linearly

- The change in the Slow Start Mechanism consists of
doubling the window every other RTT, rather than
every RTT and of using a boundary in the difference
between throughputs to exit the Slow Start phase,
rather than a window size value.

TCP Performance

Utilization of a link with 5 TCP connections

1
09 15, o
622
c 0.8 ——
2 \ Cannot fully utilize the
N 0.7 = =0 huge capacity of high-
506 speed networks!
~ - —¢5000
C
0.5
i 10000
0.3 |
0 2000 4000 6000 8000 10000
Link Capacity (Mbps)

NS-2 Simulation (100 sec)
e Link Capacity = 155Mbps, 622Mbps, 2.5Gbps, 5Gbps, 10Gbps,
e Drop-Tail Routers, 0.1BDP Buffer
e 5 TCP Connections, 100ms RTT, 1000-Byte Packet Size

TCP Congestion Control

- The Cilnstantaneous throughput of TCP is controlled by a variable
cwnd,

- TCP transmits approximately a cwnd number of packets per RTT
(Round-Trip Tlme]}o.

A Packetloss et loss Packet loss Packet |

cwnd

le »le | »le |
I‘ VI‘

»la

>
gl

Slow start Congestion avoidance Time (RTT)

TCP over High-Speed Networks

e ATCP connection with 1250-Byte packet size and 100ms RTT is
running over a 10Gbps link (assuming no other connections, and no
buffers at routers)

1.4 hours 1.4 hours

loss Packet loss Packet éloss TCP

A Packet [5(increaseicket

100,000

cwnd

le »le »le »le >

< Ll Lt Lt >
| | I | |

Slow start Congestion avoidance Time (RTT)

STCP (Scalable TCP)

- STCP adaptively increases cwnd, and decreases cwnd by
1/8.

A Packetloss cket loss Packet loss Packet |

cwnd

- >
Time (RTT)

le »le »le »le >
Lad

< > >
Slow start Congestion avoidance

HSTCP (High Speed TCP)

- HSTCP adaptively increases cwnd, and adaptively decreases cwnd.

- The larger the cwnd, the larger the increment, and the smaller the
decrement.

A Packetloss cket loss Packet loss

cwnd

>

Slow start Congestion avoidance Time (RTT)

le e P P Y|
- Lad Lad
| | | >«

Some Measurements of Throughput

CERN -SARA

« Using the GEANT Backup Link
— 1 GByte file transfers
—Blue Data
—Red TCP ACKs
« Standard TCP
— Average Throughput 167 Mbit/s
— Users see 5 - 50 Mbit/s!
* High-Speed TCP

— Average Throughput
345 Mbit/s

e Scalable TCP

— Average
Throughput 340
Mbit/s

Standard TCP tden 100 25 Jan03 o Qut Mbits
500 T 1.0
" T16
@ 400 114 3
a 4 o
S 0 12 2
2 I
& 200 .A 1 A A A A P, A 21 0.8 6:“.
“ | / 106 3
" 100 S 04 @
A WYL
0 : 0
1043509370 1043509470 1043509570 1043509670 1043509770
Time
Hispeed TCP tden 2000 26 Jan03 I 2
500 1 1.8
2 ' : } l 1.4 2
o ¢ M 1122
S 300 { ! P
; #;ﬂ A t 0.8 >
¥ 200 - i ¥ Rt] s
= L I \j 1068
100 : L4404
102
0 ‘ ‘ ‘ —— Out Mbit's
1043577520 1043577620 1043577720 1043577820 | . | bit's
Time
Scalable TCP txlen 2000 27 Jan03 r 2
500 L 1.8
116 @
v . Py i)
E 400 i 1 T *+ tI hd L 1.4 =

i

|

s
» 300 T
200 At

"
i
i

+ THiT L
5 f ! -
14 I 0.8 3
= H 0.6 ¢

100 1 - 0.4

1 0.2

o T T T 0

1043678800 1043678900 1043679000 1043679100 —— Out Mbit's
Time —— In Mbit/s

- Packet Losses give binary feedback to the end
user .
 Binary feedback induces oscillations.
* Need multi-bit feedback to improve
performance.
 Like TCP Vegas FAST TCP uses delays to
iInfer congestion.
* The window is updated as follows.
w=w+min[2w,(1—-y)+ y(ba;efTTT w+a)]

SC2002 Network

NORTH
ATLANTILC

OCEAN

37 Km

il] i [Mty

FAST throughput
(averaged over 1hr)

Average
utilization

|

19%

o/

7 txq=100 ji“

Linux TCP

27%

txa/ OOO/O

Linux TCP

1G

“gualfislacd. 600 gnplot” ——

0 HO 100 150 0o 3 BN 9
Ting (sec)

FAST

16%

A

'y

:hj)//'
_‘../*’ f

f%//. A

Linux TCP

48%

L

Linux TCP

f

\
i

i

f

|
f

!

ff

|
f

I

\
L1

FAST

#

\
i

Ll

The XCP Protocol

R%L Round Trip Time

Congestion Window

Congestion Header

How does XCP Work?

Round Trip Time

Congestion Window

How does XCP Work?

XCP extends ECN and CSFQ

Routers compute feedback without

any per-flow state

How Does an XCP Router Compute
the Feedback?

Congestion Fairness
Controller Controller

g : gorithm:

Aggregate traffic changes by A| | If A >0 = Divide A equally
A ~ Spare Bandwidth between flows

A ~ - Queue Size If A <O = Divide A between

So, 4= ad,, Spare - f Queue flows proportionally to their
current rates

Getting the devil out of the detalils ...

Congestion Controller Fairness Controller

Theorem: System converges

to optimal utilization (i.e., ,
stable) for any link bandwidth, | | Need fo estimate number of
delay, number of sources if: flows N

O<a<—— and ,B:azx/i N = Z :

4\/_ o TTx(Cwndpkt/RTTpkt)

No Per-Flow State |

No Parameter Tuning

XCP Remains Efficient as
Bandwidth or Delay Increases

Utilization as a function of

Bandwidth
1 . - .
:..I],F.----.,.__. | ———————————— l
<
S S
= 08 i~
5 o
N N
= P % .|—:
+
= 06 —_ > 06
o S X
< XCP\, << XCP =
0.4 | TCP-RED-ECN 4 04 | TCP-RED-ECN &
TCP-CSFQ-ECN + TCP-CSFQ-ECN +
TCP-REM-ECN © TCP-REM-ECN @
TCP-AVQ-ECN X TCP-AVQ-ECN X
0 1000 2000 3000 4000 0O 02 04 06 08 1 12 14

Bottleneck Bandwidth (Mb/s) Round Trip Delay (sec)

XCP Remains Efficient as
Bandwidth or Delay Increases
Utilization as a function of Utilization as a function

Bandwidth | of Delay
[——— | ———
c
S S
‘= 08 4+~ 0.8
= S
N N
= P % .T:
"5 0.6 —_ > 06
- o))
S S
< XCP\, < XCP =
04 | TCP-RED-ECN & " 04 | TCP-RED-ECN &
TCP-CSFQ-ECN + TCP-CSFQ-ECN +
TCP-REM-ECN o TCP-REM-ECN @
TCP-AVQ-ECN X TCP-AVQ-ECN X
0 1000 2000 3000 4000 0O 02 04 06 08 1 12 14

Bottleneck Bandwidth (Mb/s) Round Trip Delay (sec)

The ACP protocol

excess capacity=0.98 link capacity-incoming traffic
desired rate=Pr[desired rate+1/N_hat(k iexcess capacity-k q*queue bytes)]

H rtt
H feedback
H cong

H-feedback .
min
e H-feedback

desired rat
[] -
= — - [] ——
Sender Destination
w2
H feedback

desired window=H _feedback*mrtt

size
cwnd=Pr[cwnd+0.1/cwnd(desired_window-cwnd)] if H cong=1
cwnd=Pr[cwnd+1/cwnd(desired window-cwnd)] otherwise

Responses generated by ACP

300 , : :
== =yser 1 ,\500
= user 30 8
250 S 1)
user 50 ég 400!
(=}
200 Q
T . . (/_J 300
S 150 S et g
S ' ' 3
]] 3 200H
1001} ' v <
[] [3]
]] g :
: ' ' @ 100]]
1 2 ; A ;
‘ ! m
i i ! i 0 da ‘
0 20 40 60 80 0 20 40 60 80
Time (sec) Time (sec)
1.4 T
120
c
L
®
- :
508
% ;
o060
c
Q2
Boal
7]
02f
0 i i i
0 20 40 60 80

Time (sec)

	EPL606
	Outline
	Transport Layer
	End-to-End Protocols
	Position of TCP and UDP in TCP/IP protocol suite
	Simple Demultiplexor (UDP)
	Reliable vs. Best-Effort Comparison
	TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581
	TCP Overview
	TCP segment structure
	TCP segment structure - Control field
	TCP Connection Management
	TCP Connection Management (cont.)
	TCP Connection Management (cont.)
	TCP seq. #’s and ACKs
	TCP Round Trip Time and Timeout
	Example RTT estimation:
	TCP Round Trip Time and Timeout
	TCP reliable data transfer
	Segment Size
	TCP sender events:
	TCP �sender�(simplified)
	TCP: retransmission scenarios
	TCP retransmission scenarios (more)
	Silly Window Syndrome
	Fast Retransmit
	Fast retransmit algorithm:
	Outline
	TCP Flow Control
	TCP Flow control: how it works
	Flow Control
	TCP Acknowledgment
	Fixed Windowing
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	TCP Flow control: Example
	Keeping the Pipe Full
	Delay-Bandwidth product
	Nagle’s Algorithm
	TCP ACK generation [RFC 1122, RFC 2581]
	Congestion Control Issues
	Framework
	Principles of Congestion Control
	Principles of Congestion Control
	Ideal Performance
	Figure 10.3
	Practical Performance
	Figure 10.4
	Causes/costs of congestion: scenario 1
	Causes/costs of congestion: scenario 2
	Causes/costs of congestion: scenario 2
	Causes/costs of congestion: scenario 3
	Causes/costs of congestion: scenario 3
	Approaches towards congestion control
	Explicit congestion signaling
	Congestion Avoidance with Explicit Signaling
	2 Bits for Explicit Signaling
	Congestion Control strategies
	Taxonomy
	Outline
	TCP Congestion Control
	Figure 12.11 Illustration of Slow Start and Congestion Avoidance
	Additive Increase/Multiplicative Decrease
	AIMD (cont)
	AIMD (cont)
	AIMD (cont)
	TCP Slow Start
	TCP Slow Start (more)
	Slow Start
	Slow Start (cont)
	Example trace
	Fast Retransmit and Fast Recovery
	Fast Retransmit and Fast Recovery
	Fast Retransmit and Fast Recovery
	Results
	Congestion Avoidance
	DECbit
	End Hosts
	Random Early Detection (RED)
	RED Details
	RED Details (cont)
	RED Details (cont)
	Tuning RED
	Summary: TCP Congestion Control
	TCP sender congestion control
	TCP throughput
	TCP Throughput
	Slide Number 90
	TCP Flavors
	TCP Tahoe
	TCP Reno
	TCP New-Reno
	TCP SACK
	TCP SACK (Example)
	TCP Vegas
	Algorithm
	Algorithm (cont)
	Intuition
	Vegas Details
	TCP Performance
	TCP Congestion Control
	TCP over High-Speed Networks
	STCP (Scalable TCP)
	HSTCP (High Speed TCP)
	Some Measurements of Throughput CERN -SARA
	TCP FAST
	SC2002 Network
	FAST throughput�(averaged over 1hr)
	The XCP Protocol
	 How does XCP Work?
	 How does XCP Work?
	How Does an XCP Router Compute the Feedback?
	Getting the devil out of the details …
	XCP Remains Efficient as Bandwidth or Delay Increases
	XCP Remains Efficient as Bandwidth or Delay Increases
	The ACP protocol
	Responses generated by ACP

