
EPL606
Transport Layer

Outline
• Transport Layer Services
• TCP Overview
 Segment structure
 Sequence/Acknowledgement numbers
 TCP connection management
 RTT
 acks, events, fast retransmit

• Flow Control
• Congestion Control
 General causes
 TCP cong control (slow start, AIMD)

• TCP Throughput
• TCP versions

Transport Layer

 Session multiplexing
 Segmentation
 Flow control (when

required)
 Connection-oriented

(when required)
 Reliability (when required)

End-to-End Protocols
• Underlying best-effort network
 drop messages
 re-orders messages
 delivers duplicate copies of a given message
 limits messages to some finite size
 delivers messages after an arbitrarily long delay

• Common end-to-end services
 guarantee message delivery
 deliver messages in the same order they are sent
 deliver at most one copy of each message
 support arbitrarily large messages
 support synchronization
 allow the receiver to flow control the sender
 support multiple application processes on each host

Position of TCP and UDP in
TCP/IP protocol suite

Simple Demultiplexor (UDP)
• Unreliable and unordered datagram service
• Adds multiplexing
• No flow control
• Endpoints identified by ports
 servers have well-known ports
 see /etc/services on Unix

• Header format

• Optional checksum
 psuedo header + UDP header + data

SrcPort DstPort

ChecksumLength

Data

0 16 31

Reliable vs. Best-Effort
Comparison

TCP: Overview RFCs: 793, 1122, 1323, 2018,
2581

• full duplex data:
 bi-directional data flow in

same connection
 MSS: maximum segment

size

• connection-oriented:
 handshaking (exchange of

control msgs) init’s sender,
receiver state before data
exchange

• flow controlled:
 sender will not overwhelm

receiver

• point-to-point:
 one sender, one receiver

• reliable, in-order byte
steam:
 no “message boundaries”

• pipelined:
 TCP congestion and flow

control set window size

• send & receive buffers

TCP Overview
• Byte-stream
 app writes bytes
 TCP sends segments
 app reads bytes

• Flow control: keep sender
from overrunning receiver

• Congestion control: keep
sender from overrunning
network

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

■ ■ ■

TCP segment structure

TCP segment structure -
Control field

TCP Connection Management
• How do applications

initiate a connection?
• One end (server)

registers with the TCP
layer instructing it to
“accept” connections at a
certain port

• The other end (client)
initiates a “connect”
request which is
“accept”-ed by the server

• Recall: TCP sender,
receiver establish
“connection” before
exchanging data
segments

• initialize TCP variables:
 seq. #s
 buffers, flow control info

(e.g. RcvWindow)

TCP Connection Management
(cont.)

CTL = Which control bits in the TCP header are set to 1

TCP Connection Management (cont.)
Closing a connection:
client closes socket:
clientSocket.close();

Step 1: client end system sends TCP FIN
control segment to server

Step 2: server receives FIN, replies with
ACK. Closes connection, sends FIN.

Step 3: client receives FIN, replies with
ACK.
 Enters “timed wait” - will respond

with ACK to received FINs

Step 4: server, receives ACK.
Connection closed.

Note: with small modification, can
handle simultaneous FINs.

client server

close

close

closed

ti
m

ed
 w

ai
t

TCP seq. #’s and ACKs
• The bytes of data being transferred in each

connection are numbered by TCP.

• The numbering starts with a randomly generated
number.

Active participant
(client)

Passive participant
(server)

TCP Round Trip Time and
Timeout
Q: how to set TCP

timeout value?
• longer than RTT
 but RTT varies

• too short: premature timeout
 unnecessary

retransmissions

• too long: slow reaction to
segment loss

Q: how to estimate RTT?
• SampleRTT: measured time

from segment transmission
until ACK receipt
 ignore retransmissions

• SampleRTT will vary, want
estimated RTT “smoother”
 average several recent

measurements, not just
current SampleRTT

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

 Exponential weighted moving average
 influence of past sample decreases exponentially fast
 typical value: α = 0.125

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

TCP Round Trip Time and
Timeout
Setting the timeout
• EstimatedRTT plus “safety margin”
 large variation in EstimatedRTT -> larger safety margin

• first estimate of how much SampleRTT deviates from
EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-β)*DevRTT +
β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

Then set timeout interval:

TCP reliable data transfer
• TCP creates reliable data

transfer service on top of IP’s
unreliable service

• Pipelined segments

• Cumulative acks

• TCP uses single
retransmission timer

• Retransmissions are
triggered by:
 timeout events
 duplicate acks

• Initially consider simplified
TCP sender:
 ignore duplicate acks
 ignore flow control, congestion

control

Segment Size
• Set to at most MSS (Maximum Segment Size)
 MSS is the largest segment size that can be sent without IP

fragmentation

• TCP supports push operation to allow application to
explicitly send a segment

TCP sender events:
data rcvd from app:
• Create segment with seq #
• seq # is byte-stream

number of first data byte
in segment

• start timer if not already
running (think of timer as
for oldest unacked
segment)

• expiration interval:
TimeOutInterval

timeout:
• retransmit segment that

caused timeout
• restart timer
Ack rcvd:

• If acknowledges previously
unacked segments
 update what is known to be

acked
 start timer if there are

outstanding segments

TCP
sender
(simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)

start timer
pass segment to IP
NextSeqNum = NextSeqNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with

smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

} /* end of loop forever */

Comment:
• SendBase-1: last
cumulatively
ack’ed byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

TCP: retransmission scenarios
Host A

time
premature timeout

Host B

Se
q=

92
 t

im
eo

ut

Host A

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

time

Se
q=

92
 t

im
eo

ut
SendBase

= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100

TCP retransmission scenarios
(more)

Host A

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

time

SendBase
= 120

Silly Window Syndrome
• How aggressively does sender exploit open window?

• Receiver-side solutions
 after advertising zero window, wait for space equal to a

maximum segment size (MSS)
 delayed acknowledgements

Sender Receiver

Fast Retransmit
• Time-out period often

relatively long:
 long delay before resending

lost packet

• Detect lost segments via
duplicate ACKs.
 Sender often sends many

segments back-to-back
 If segment is lost, there will

likely be many duplicate
ACKs.

• If sender receives 3
ACKs for the same data,
it supposes that segment
after ACKed data was
lost:
 fast retransmit: resend

segment before timer
expires

Fast retransmit algorithm:
event: ACK received, with ACK field value of y

if (y > SendBase) {
SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

a duplicate ACK for
already ACKed segment

fast retransmit

Outline
• Transport Layer Services

• TCP Overview
 Segment structure
 Seq nums
 Tcp connection management
 RTT
 Rtd: acks, events, fast retransmit

• Flow Control

• Congestion Control
 General causes
 Tcp cong control (slow start, AIMD)

• TCP Throughput

• TCP versions

TCP Flow Control
• receive side of TCP

connection has a receive
buffer:

• speed-matching service:
matching the send rate to the
receiving app’s drain rate

• app process may be slow at
reading from buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control

TCP Flow control: how it works
• spare room in buffer
= RcvWindow

= RcvBuffer-[LastByteRcvd
- LastByteRead]

• Rcvr advertises spare
room by including value of
RcvWindow in segments

• Sender limits unACKed
data to RcvWindow
 guarantees receive buffer

doesn’t overflow

Flow Control

TCP Acknowledgment

Fixed Windowing

Sender buffer

TCP Flow control: Example

Receiver buffer

Sender buffer and sender window

TCP Flow control: Example

Sliding the sender window

TCP Flow control: Example

Expanding the sender window

Shrinking the sender window

TCP Flow control: Example

TCP Flow control: Example
• In TCP, the sender window size is totally controlled

by the receiver window value.

• However, the actual window size can be smaller if
there is congestion in the network.

• Some more points about TCP’s Sliding Windows:
 1. The source does not have to send a full window’s worth of

data.
 2. The size of the window can be increased or decreased by the

destination.
 3. The destination can send an acknowledgment at any time.

Keeping the Pipe Full
• D×B dictates how big the Advertised Window should

be.

• Window should be opened enough to allow D×B data
to be transmitted.

• Bandwidth & Time Until Wrap Around

• Wrap Around: 32-bit SequenceNum
Bandwidth
T1 (1.5Mbps)
Ethernet (10Mbps)
T3 (45Mbps)
FDDI (100Mbps)
STS-3 (155Mbps)
STS-12 (622Mbps)
STS-24 (1.2Gbps)

Time Until Wrap Around
6.4 hours
57 minutes
13 minutes
6 minutes
4 minutes
55 seconds
28 seconds

Delay-Bandwidth product
• Bytes in Transit: 16-bit AdvertisedWindow 64kB

max)

• Bandwidth & Delay x Bandwidth Product for 100ms
RTT

Bandwidth
T1 (1.5Mbps)
Ethernet (10Mbps)
T3 (45Mbps)
FDDI (100Mbps)
STS-3 (155Mbps)
STS-12 (622Mbps)
STS-24 (1.2Gbps)

Delay x Bandwidth Product
18KB
122KB
549KB
1.2MB
1.8MB
7.4MB
14.8MB

Nagle’s Algorithm
• How long does sender delay sending data?
 too long: hurts interactive applications
 too short: poor network utilization
 strategies: timer-based vs self-clocking

• When application generates additional data
 if fills a max segment (and window open): send it
 else
 if there is unack’ed data in transit: buffer it until ACK arrives
 else: send it

TCP ACK generation [RFC
1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment startsat lower end of gap

Congestion Control Issues
• Two sides of the same coin
 pre-allocate resources so at to avoid congestion
 control congestion if (and when) is occurs

• Two points of implementation
 hosts at the edges of the network (transport protocol)
 routers inside the network (queuing discipline)

• Underlying service model
 best-effort (assume for now)
 multiple qualities of service (later)

Destination
1.5-Mbps T1 link

Router

Source
2

Source
1

100-Mbps FDDI

10-Mbps Ethernet

Framework
• Connectionless flows
 sequence of packets sent between source/destination pair
 maintain soft state at the routers

• Taxonomy
 router-centric versus host-centric
 reservation-based versus feedback-based
 window-based versus rate-based

Router

Source
2

Source
1

Source
3

Router

Router

Destination
2

Destination
1

Principles of Congestion
Control
• Congestion:
• informally: “too many sources sending too much data too

fast for network to handle”
• Formally: “Congestion occurs when number of packets

transmitted approaches network capacity”
• Objective of congestion control:
 keep number of packets below level at which performance drops

off dramatically

• different from flow control!
• manifestations:
 lost packets (buffer overflow at routers)
 long delays (queueing in router buffers)

• Data network is a network of queues

• If arrival rate > transmission rate
 then queue size grows without bound and packet delay goes to

infinity

• Discard any incoming packet if no buffer available

• Saturated node exercises flow control over neighbors
 May cause congestion to propagate throughout network

Principles of Congestion
Control

Ideal Performance
• Infinite buffers, no overhead for packet transmission

or congestion control

• Throughput increases with offered load until full
capacity

• Packet delay increases with offered load approaching
infinity at full capacity

• Power = throughput / delay

• Higher throughput results in higher delay

Figure 10.3

Practical Performance
• Finite buffers, non-zero packet processing overhead

• With no congestion control, increased load eventually
causes moderate congestion: throughput increases at
slower rate than load

• Further increased load causes packet delays to
increase and eventually throughput to drop to zero

Figure 10.4

Causes/costs of congestion: scenario 1

• two senders, two
receivers

• one router, infinite
buffers

• no retransmission

• large delays when
congested

• maximum achievable
throughput

Causes/costs of congestion:
scenario 2
• one router, finite buffers

• sender retransmission of lost packet

finite shared output
link buffers

Host A λin : original
data

Host B

λout

λ'in : original data, plus
retransmitted data

Causes/costs of congestion: scenario 2
a. always: (goodput)

b. “perfect” retransmission only when loss:

c. retransmission of delayed (not lost) packet makes larger
(than perfect case) for same

λ
in

λout=

λ
in

λout>

λ
inλout

“costs” of congestion:
 more work (retrans) for given “goodput”
 unneeded retransmissions: link carries multiple copies of pkt

R/2

R/2
λin

λ o
ut

b.

R/2

R/2
λin

λ o
ut

a.

R/2

R/2
λin

λ o
ut

c.

R/4

R/3

Causes/costs of congestion: scenario 3• four senders
• multihop paths
• timeout/retransmit

λ
in

Q: what happens as
and increase ?λ

in

finite shared output
link buffers

Host A
λin : original data

Host B

λout

λ'in : original data, plus
retransmitted data

Causes/costs of congestion: scenario 3

Another “cost” of congestion:
 when packet dropped, any “upstream transmission capacity

used for that packet was wasted!

H
o
s
t
A

H
o
s
t
B

λ
o
u
t

Approaches towards congestion
control

Implicit end-end
congestion control:
• no explicit feedback from
network

• congestion inferred from end-
system observed loss, delay

• approach taken by TCP

Network-assisted
congestion control:
• routers provide feedback to
end systems

 single bit indicating
congestion (SNA, DECbit,
TCP/IP ECN, ATM)

 explicit rate sender
should send at

 “backpressure”

Explicit congestion signaling
• Direction
 Backward
 Forward

• Categories
 Binary
 Credit-based
 rate-based

Congestion Avoidance with
Explicit Signaling
• 2 strategies

• Congestion always occurred slowly, almost always at
egress nodes
 forward explicit congestion avoidance

• Congestion grew very quickly in internal nodes and
required quick action
 backward explicit congestion avoidance

2 Bits for Explicit Signaling
• Forward Explicit Congestion Notification
 For traffic in same direction as received frame
 This frame has encountered congestion

• Backward Explicit Congestion Notification
 For traffic in opposite direction of received frame
 Frames transmitted may encounter congestion

Congestion Control strategies
• Two strategies
 pre-allocate resources so at to avoid congestion
 send data and control congestion if (and when) it occurs

• Two points of implementation
 hosts at the edges of the network (transport protocol)
 routers inside the network (queuing discipline)

Taxonomy
• router-centric versus host-centric
 Attempt to simplify routers

• reservation-based versus Feedback-based
 RSVP requires API and application changes

• window-based versus rate-based
 ATM has rate based algorithms to specify acceptable rates for

each flow. Alternatives include congestion indication where
hosts shrink their window.

Outline
• Transport layer Services
• TCP Overview
 Segment structure
 Seq nums
 Tcp connection management
 RTT
 Rtd: acks, events, fast retransmit

• Flow Control
• Congestion Control
 General causes
 Tcp cong control (slow start, AIMD)

• TCP Throughput
• TCP versions

TCP Congestion Control
• Idea
 assumes best-effort network (FIFO or FQ routers) each source

determines network capacity for itself
 uses implicit feedback
 ACKs pace transmission (self-clocking)

• Challenge
 determining the available capacity in the first place
 adjusting to changes in the available capacity

Figure 12.11 Illustration of Slow
Start and Congestion Avoidance

Additive Increase/Multiplicative
Decrease

• Objective: adjust to changes in the available capacity
• New state variable per connection: CongestionWindow
 limits how much data source has in transit

MaxWin = MIN(CongestionWindow,
AdvertisedWindow)

EffWin = MaxWin - (LastByteSent -
LastByteAcked)

• Idea:
 increase CongestionWindow when congestion goes down
 decrease CongestionWindow when congestion goes up

AIMD (cont)
• Question: how does the source determine whether

or not the network is congested?

• Answer: a timeout occurs
 timeout signals that a packet was lost
 packets are seldom lost due to transmission error
 lost packet implies congestion

AIMD (cont)

• In practice: increment a little for each ACK
Increment = (MSS * MSS)/CongestionWindow

CongestionWindow += Increment

• Algorithm
– increment CongestionWindow by

one packet per RTT (linear increase)
– divide CongestionWindow by two

whenever a timeout occurs
(multiplicative decrease)

Source Destination

AIMD (cont)
• Trace: sawtooth behavior

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
Time (seconds)

70

30
40
50

10

10.0

TCP Slow Start
• Objective: determine the available capacity in the

first place

• When connection begins, CongWin = 1 MSS
 Example: MSS = 500 bytes & RTT = 200 msec
 initial rate = 20 kbps

• available bandwidth may be >> MSS/RTT
 desirable to quickly ramp up to respectable rate

• When connection begins, increase rate exponentially
fast until first loss event

TCP Slow Start (more)
Host A

RT
T

Host B

time

 Available Window =
MIN[window, cwnd]

 Start connection with
cwnd=1

 Double CongWin
every RTT = =

 Increment cwnd at
each ACK, to some
max

  cwnd= cwnd+1

Slow Start
• Objective: determine the available

capacity in the first
• Idea:
 begin with CongestionWindow = 1 packet
 double CongestionWindow each RTT

(increment by 1 packet for each ACK)

Source Destination

Slow Start (cont)
• Exponential growth, but slower than all at once
• Used…
 when first starting connection
 when connection goes dead waiting for timeout

• Trace

• Problem: lose up to half a CongestionWindow’s worth
of data

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
Time (seconds)

70

30
40
50

10

Example trace
• Loss event detected only using timeouts.

• Problem: course grain TCP timeouts lead to idle
periods

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
Time in seconds

0
10
20
30
40
50
60
70

Value of CongesionWindowtimeout Time when transmit
Initial transmit of
retransmitted packet

CongestionThreshold

Fast Retransmit and Fast
Recovery
• Problem: coarse-grain TCP

timeouts lead to idle
periods

• Fast retransmit: use
duplicate ACKs to trigger
retransmission

Packet 1
Packet 2
Packet 3
Packet 4

Packet 5

Packet 6

Retransmit
packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver

Fast Retransmit and Fast
Recovery
• Problem: coarse-grain TCP

timeouts lead to idle periods

• Fast retransmit: use
duplicate ACKs to trigger
retransmission

Fast Retransmit and Fast
Recovery
• Problem: coarse-grain TCP

timeouts lead to idle periods

• Fast retransmit: use
duplicate ACKs to trigger
retransmission

Results

• Fast recovery
 skip the slow start phase
 go directly to half the last successful
CongestionWindow (ssthresh)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Time (seconds)

70

30
40
50

10

Congestion Avoidance
• TCP’s strategy
 control congestion once it happens
 repeatedly increase load in an effort to find the point at which

congestion occurs, and then back off

• Alternative strategy
 predict when congestion is about to happen
 reduce rate before packets start being discarded
 call this congestion avoidance, instead of congestion control

• Two possibilities
 router-centric: DECbit and RED Gateways
 host-centric: TCP Vegas

DECbit
• Add binary congestion bit to each packet header

• Router
 monitors average queue length over last busy+idle cycle

 set congestion bit if average queue length > 1
 attempts to balance throughout against delay

Queue length

Current
time

Time
Current

cycle
Previous

cycle
Averaging

interval

End Hosts

• Destination echoes bit back to source

• Source records how many packets resulted in set bit

• If less than 50% of last window’s worth had bit set
 increase CongestionWindow by 1 packet

• If 50% or more of last window’s worth had bit set
 decrease CongestionWindow by 0.875 times

Random Early Detection (RED)
• Notification is implicit
 just drop the packet (TCP will timeout)
 could make explicit by marking the packet

• Early random drop
 rather than wait for queue to become full, drop each arriving

packet with some drop probability whenever the queue
length exceeds some drop level

RED Details
• Compute average queue length

AvgLen = (1 - Weight) * AvgLen +
Weight * SampleLen

0 < Weight < 1 (usually 0.002)
SampleLen is queue length each time a packet arrives

MaxThreshold MinThreshold

AvgLen

RED Details (cont)
• Two queue length thresholds

if AvgLen <= MinThreshold then
enqueue the packet

if MinThreshold < AvgLen < MaxThreshold then
calculate probability P
drop arriving packet with probability P

if ManThreshold <= AvgLen then
drop arriving packet

RED Details (cont)
• Computing probability P

TempP = MaxP * (AvgLen - MinThreshold)/
(MaxThreshold - MinThreshold)

P = TempP/(1 - count * TempP)

• Drop Probability Curve
P(drop)

1.0

MaxP

MinThresh MaxThresh

AvgLen

Tuning RED
• Probability of dropping a particular flow’s packet(s) is

roughly proportional to the share of the bandwidth that
flow is currently getting

• MaxP is typically set to 0.02, meaning that when the
average queue size is halfway between the two thresholds,
the gateway drops roughly one out of 50 packets.

• If traffic id bursty, then MinThreshold should be
sufficiently large to allow link utilization to be maintained
at an acceptably high level

• Difference between two thresholds should be larger than
the typical increase in the calculated average queue length
in one RTT; setting MaxThreshold to twice MinThreshold
is reasonable for traffic on today’s Internet

• Penalty Box for Offenders

Summary: TCP Congestion Control
• When CongWin is below Threshold, sender in

slow-start phase, window grows exponentially.

• When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

• When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to Threshold.

• When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

TCP sender congestion control
Event State TCP Sender Action Commentary

ACK receipt
for previously
unacked
data

Slow Start
(SS)

CongWin = CongWin + MSS,
If (CongWin > Threshold)

set state to “Congestion
Avoidance”

Resulting in a doubling of
CongWin every RTT

ACK receipt
for previously
unacked
data

Congestion
Avoidance
(CA)

CongWin = CongWin+MSS *
(MSS/CongWin)

Additive increase, resulting
in increase of CongWin by
1 MSS every RTT

Loss event
detected by
triple
duplicate
ACK

SS or CA Threshold = CongWin/2,
CongWin = Threshold,
Set state to “Congestion
Avoidance”

Fast recovery,
implementing multiplicative
decrease. CongWin will not
drop below 1 MSS.

Timeout SS or CA Threshold = CongWin/2,
CongWin = 1 MSS,
Set state to “Slow Start”

Enter slow start

Duplicate
ACK

SS or CA Increment duplicate ACK count
for segment being acked

CongWin and Threshold not
changed

TCP throughput
• What’s the average throughout ot TCP as a function

of window size and RTT?
 Ignore slow start

• Let W be the window size when loss occurs.

• When window is W, throughput is W/RTT
• Just after loss, window drops to W/2, throughput to

W/2RTT.

• Average throughout: .75 W/RTT

• Average throughput as a function of drop
probability: 3()

2
B p

p
=

TCP Throughput
• Example: 1500 byte segments, 100ms RTT, want 10

Gbps throughput

• Requires window size W = 83,333 in-flight segments

• Throughput in terms of loss rate:

• ➜ L = 2·10-10 Wow

• New versions of TCP for high-speed needed!

LRTT
MSS⋅22.1

Incr: w ← w + a , a =1
Decr: w ← bw , b = 1/2

f1(k+1)=f1(k)+a if f1(k)+f2(k) < B
f1(k+1)=bf1(k) if f1(k)+f2(k) >= B

f2(k+1)=f2(k)+a if f2(k)+f2(k) < B
f2(k+1)=bf2(k) if f1(k)+f2(k) >= B

f2(k+1)-f1(k+1)= f2(k)-f1(k) if f1(k)+f2(k) < B
f2(k+1)-f1(k+1)= b(f2(k)-f1(k)) if f1(k)+f2(k) >= B

TCP Fairness

TCP Flavors
• TCP-Tahoe
 W=1 adaptation on congestion

• TCP-Reno
 W=W/2 adaptation on fast retransmit, W=1 on timeout

• TCP-newReno
 TCP-Reno + fast recovery

• TCP Vegas
 Uses round-trip time as an early-congestion-feedback

mechanism
 Reduces losses

• TCP-SACK
 Selective Acknowledgements

TCP Tahoe
• Slow-start

• Congestion control upon time-out.

• Congestion window reduced to 1 and slow-start
performed again

• Simple

• Congestion control too aggressive

• It takes a complete timeout interval to detect a packet
loss and this empties the pipeline

TCP Reno
• Tahoe + Fast re-transmit

• Packet loss detected both through timeouts, and
through DUP-ACKs

• On receiving 3 DUP-ACKs retransmit packet and
reduce the ssthresh to half of current window and set
cwnd to this value. For each DUP-ACK received
increase cwnd by one. If cwnd larger than number of
packets in transit send new data else wait. In this
way the pipe is not emptied.

• Window cut-down to 1 (and subsequent slow-start)
performed only on time-out

TCP New-Reno
• TCP-Reno with more intelligence during fast recovery

• In TCP-Reno, the first partial ACK will bring the
sender out of the fast recovery phase

• Results in multiple reductions of the cwnd for packets
lost in one RTT.

• In TCP New-Reno, partial ACK is taken as an
indication of another lost packet (which is
immediately retransmitted).

• Sender comes out of fast recovery only after all
outstanding packets (at the time of first loss) are
ACKed.

TCP SACK
• TCP (Tahoe, Reno, and New-Reno) uses cumulative

acknowledgements

• When there are multiple losses, TCP Reno and New-
Reno can retransmit only one lost packet per round-
trip time

• SACK enables receiver to give more information to
sender about received packets allowing sender to
recover from multiple-packet losses faster

TCP SACK (Example)
• Assume packets 5-25 are transmitted

• Let packets 5, 12, and 18 be lost

• Receiver sends back a CACK=5, and SACK=(6-11,13-
17,19-25)

• Sender knows that packets 5, 12, and 18 are lost and
retransmits them immediately

TCP Vegas
• Idea: source watches for some sign that some router's

queue is building up and congestion will happen soon;
e.g.,
 RTT is growing
 sending rate flattens

Algorithm
• Let BaseRTT be the minimum of all measured RTTs

(commonly the RTT of the first packet)
• if not overflowing the connection, then
 ExpectedRate = CongestionWindow / BaseRTT

• source calculates current sending rate (ActualRate) once
per RTT

• source compares ActualRate with ExpectedRate
 Diff = ExpectedRate – ActualRate
 if Diff < α
 -->increase CongestionWindow linearly

 else if Diff >β
 -->decrease CongestionWindow linearly

 else
 -->leave CongestionWindow unchanged

Algorithm (cont)
• Parameters

− α = 1 packet
− β = 3 packets

• Even faster retransmit
 keep fine-grained timestamps for each packet
 check for timeout on first duplicate ACK

70
60
50
40
30
20
10

Time (seconds)
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

240
200
160
120

80
40

Time (seconds)

Intuition

Driving on Ice

60

20

0.5 1.0 1.5 4.0 4.5 6.5 8.0

KB

Time (seconds)

Time (seconds)

70

30
40
50

10

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

900

300
100

0.5 1.0 1.5 4.0 4.5 6.5 8.0

Se
nd

in
g

KB
ps 1100

500
700

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

Time (seconds)
0.5 1.0 1.5 4.0 4.5 6.5 8.0Q

ue
ue

 s
iz

e
in

 ro
ut

er

5

10

2.0 2.5 3.0 3.5 5.0 5.5 6.0 7.0 7.5 8.5

Congestion Window

Average send rate at source

Average Q length in router

Vegas Details
• Value of throughput with no congestion is compared

to current throughput
• If current difference is smaller, increase window size

linearly
• If current difference is larger, decrease window size

linearly
• The change in the Slow Start Mechanism consists of

doubling the window every other RTT, rather than
every RTT and of using a boundary in the difference
between throughputs to exit the Slow Start phase,
rather than a window size value.

TCP Performance

155622

2500
5000

10000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000
Link Capacity (Mbps)

Li
nk

 U
til

iz
at

io
n

NS-2 Simulation (100 sec)
 Link Capacity = 155Mbps, 622Mbps, 2.5Gbps, 5Gbps, 10Gbps,

 Drop-Tail Routers, 0.1BDP Buffer
 5 TCP Connections, 100ms RTT, 1000-Byte Packet Size

Utilization of a link with 5 TCP connections

Cannot fully utilize the
huge capacity of high-

speed networks!

TCP Congestion Control
• The instantaneous throughput of TCP is controlled by a variable

cwnd,
• TCP transmits approximately a cwnd number of packets per RTT

(Round-Trip Time).

Time (RTT)Slow start Congestion avoidance

Packet loss Packet loss Packet loss
cwnd

Packet loss TCP

cwnd = cwnd + 1 cwnd = cwnd * (1-1/2)

TCP over High-Speed Networks

Packet loss

Time (RTT)Congestion avoidance

Packet loss Packet loss
cwnd

Slow start

Packet loss

 A TCP connection with 1250-Byte packet size and 100ms RTT is
running over a 10Gbps link (assuming no other connections, and no

buffers at routers)

100,000 10Gbps

50,000 5Gbps

1.4 hours 1.4 hours 1.4 hours

TCP

big
decrease

slow
increase

STCP (Scalable TCP)
• STCP adaptively increases cwnd, and decreases cwnd by

1/8.

Packet loss

Time (RTT)Slow start Congestion avoidance

Packet loss Packet loss
cwnd

Packet loss

cwnd = cwnd + 1

cwnd = cwnd + 0.01*cwnd

cwnd = cwnd * (1-1/2)

cwnd = cwnd * (1-1/8)

TCP

HSTCP (High Speed TCP)
• HSTCP adaptively increases cwnd, and adaptively decreases cwnd.
• The larger the cwnd, the larger the increment, and the smaller the

decrement.

Packet loss

Time (RTT)Slow start Congestion avoidance

Packet loss Packet loss
cwnd

Packet loss

cwnd = cwnd * (1-1/2)

cwnd = cwnd * (1-dec(cwnd))

cwnd = cwnd + 1

cwnd = cwnd + inc(cwnd)

TCP

Some Measurements of Throughput
CERN -SARA

Standard TCP txlen 100 25 Jan03

0

100

200

300

400

500

1043509370 1043509470 1043509570 1043509670 1043509770
Time

I/f
 R

at
e

M
bi

ts
/s

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

R
ec

v.
 R

at
e

M
bi

ts
/s

 Out Mbit/s
 In Mbit/s

Hispeed TCP txlen 2000 26 Jan03

0

100

200

300

400

500

1043577520 1043577620 1043577720 1043577820 1043577920
Time

I/f
 R

at
e

M
bi

ts
/s

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

R
ec

v.
 R

at
e

M
bi

ts
/s

 Out Mbit/s
 In Mbit/s

Scalable TCP txlen 2000 27 Jan03

0

100

200

300

400

500

1043678800 1043678900 1043679000 1043679100 1043679200
Time

II/
f R

at
e

M
bi

ts
/s

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

R
ec

v.
 R

at
e

M
bi

ts
/s

 Out Mbit/s
 In Mbit/s

• High-Speed TCP
– Average Throughput

345 Mbit/s

• Scalable TCP
– Average

Throughput 340
Mbit/s

• Using the GÉANT Backup Link
– 1 GByte file transfers

– Blue Data
– Red TCP ACKs

• Standard TCP
– Average Throughput 167 Mbit/s

– Users see 5 - 50 Mbit/s!

TCP FAST

min[2 , (1) ()]baseRTTw w w w
RTT

γ γ α= + − + +

• Packet Losses give binary feedback to the end
user .

• Binary feedback induces oscillations.
• Need multi-bit feedback to improve

performance.
• Like TCP Vegas FAST TCP uses delays to

infer congestion.
• The window is updated as follows.

SC2002 Network

(Sylvain Ravot, caltech)

OC48

OC192

FAST throughput
(averaged over 1hr)

Linux TCP Linux TCP FAST

92%

txq=100 txq=10000

95%

16%

48%

Linux TCP Linux TCP FAST

2G

1G
Average

utilization

19%

27%

Feedback

Round Trip Time

Congestion Window

Congestion Header

Feedback

Round Trip Time

Congestion Window

The XCP Protocol

Feedback =
+ 0.1 packet

Feedback =
+ 0.1 packet

Round Trip Time

Congestion Window

Feedback =
- 0.3 packet

How does XCP Work?

Congestion Window = Congestion Window + Feedback

Routers compute feedback without
any per-flow state

How does XCP Work?

XCP extends ECN and CSFQ

How Does an XCP Router Compute
the Feedback?
Congestion Controller Fairness Controller

Goal: Divides ∆ between
flows to converge to fairness

Looks at a flow’s state in
Congestion Header

Algorithm:
If ∆ > 0 ⇒ Divide ∆ equally

between flows
If ∆ < 0 ⇒ Divide ∆ between
flows proportionally to their

current rates

MIMD AIMD

Goal: Matches input traffic to
link capacity & drains the queue

Looks at aggregate traffic &
queue

Algorithm:
Aggregate traffic changes by ∆

∆ ~ Spare Bandwidth
∆ ~ - Queue Size

So, ∆ = α davg Spare - β Queue

∆Congestion
Controller

Fairness
Controller

∆ = α davg Spare - β Queue

2
24

0 2αβπα =<< and

Theorem: System converges
to optimal utilization (i.e.,

stable) for any link bandwidth,
delay, number of sources if:

(Proof based on Nyquist
Criterion)

Getting the devil out of the details …
Congestion Controller Fairness Controller

No Parameter Tuning

Algorithm:
If ∆ > 0 ⇒ Divide ∆ equally between flows

If ∆ < 0 ⇒ Divide ∆ between flows
proportionally to their current rates

Need to estimate number of
flows N

∑ ×
=

Tinpkts pktpkt RTTCwndT
N

)/(
1

RTTpkt : Round Trip Time in header
Cwndpkt : Congestion Window in header

T: Counting Interval

No Per-Flow State

XCP Remains Efficient as
Bandwidth or Delay Increases

Bottleneck Bandwidth (Mb/s)

Utilization as a function of
Bandwidth

Round Trip Delay (sec)

Utilization as a function
of Delay

XCP Remains Efficient as
Bandwidth or Delay Increases

Bottleneck Bandwidth (Mb/s)

Utilization as a function of
Bandwidth

Round Trip Delay (sec)

Utilization as a function
of Delay

The ACP protocol

Responses generated by ACP

	EPL606
	Outline
	Transport Layer
	End-to-End Protocols
	Position of TCP and UDP in TCP/IP protocol suite
	Simple Demultiplexor (UDP)
	Reliable vs. Best-Effort Comparison
	TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581
	TCP Overview
	TCP segment structure
	TCP segment structure - Control field
	TCP Connection Management
	TCP Connection Management (cont.)
	TCP Connection Management (cont.)
	TCP seq. #’s and ACKs
	TCP Round Trip Time and Timeout
	Example RTT estimation:
	TCP Round Trip Time and Timeout
	TCP reliable data transfer
	Segment Size
	TCP sender events:
	TCP �sender�(simplified)
	TCP: retransmission scenarios
	TCP retransmission scenarios (more)
	Silly Window Syndrome
	Fast Retransmit
	Fast retransmit algorithm:
	Outline
	TCP Flow Control
	TCP Flow control: how it works
	Flow Control
	TCP Acknowledgment
	Fixed Windowing
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	TCP Flow control: Example
	Keeping the Pipe Full
	Delay-Bandwidth product
	Nagle’s Algorithm
	TCP ACK generation [RFC 1122, RFC 2581]
	Congestion Control Issues
	Framework
	Principles of Congestion Control
	Principles of Congestion Control
	Ideal Performance
	Figure 10.3
	Practical Performance
	Figure 10.4
	Causes/costs of congestion: scenario 1
	Causes/costs of congestion: scenario 2
	Causes/costs of congestion: scenario 2
	Causes/costs of congestion: scenario 3
	Causes/costs of congestion: scenario 3
	Approaches towards congestion control
	Explicit congestion signaling
	Congestion Avoidance with Explicit Signaling
	2 Bits for Explicit Signaling
	Congestion Control strategies
	Taxonomy
	Outline
	TCP Congestion Control
	Figure 12.11 Illustration of Slow Start and Congestion Avoidance
	Additive Increase/Multiplicative Decrease
	AIMD (cont)
	AIMD (cont)
	AIMD (cont)
	TCP Slow Start
	TCP Slow Start (more)
	Slow Start
	Slow Start (cont)
	Example trace
	Fast Retransmit and Fast Recovery
	Fast Retransmit and Fast Recovery
	Fast Retransmit and Fast Recovery
	Results
	Congestion Avoidance
	DECbit
	End Hosts
	Random Early Detection (RED)
	RED Details
	RED Details (cont)
	RED Details (cont)
	Tuning RED
	Summary: TCP Congestion Control
	TCP sender congestion control
	TCP throughput
	TCP Throughput
	Slide Number 90
	TCP Flavors
	TCP Tahoe
	TCP Reno
	TCP New-Reno
	TCP SACK
	TCP SACK (Example)
	TCP Vegas
	Algorithm
	Algorithm (cont)
	Intuition
	Vegas Details
	TCP Performance
	TCP Congestion Control
	TCP over High-Speed Networks
	STCP (Scalable TCP)
	HSTCP (High Speed TCP)
	Some Measurements of Throughput CERN -SARA
	TCP FAST
	SC2002 Network
	FAST throughput�(averaged over 1hr)
	The XCP Protocol
	 How does XCP Work?
	 How does XCP Work?
	How Does an XCP Router Compute the Feedback?
	Getting the devil out of the details …
	XCP Remains Efficient as Bandwidth or Delay Increases
	XCP Remains Efficient as Bandwidth or Delay Increases
	The ACP protocol
	Responses generated by ACP

