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Abstract—Rising temperatures on Earth have led to the exploration of new technologies to help curbing the severe effects of Climate
Change. Green Planning systems belong to a new type of Internet-based technology that aim to use computing resources efficiently
to reduce energy consumption and CO2 emissions. The rapid advancement of renewable energy generation infrastructure and the
lack of energy storage solutions at scale have highlighted the importance of energy self-consumption principles in new domains (e.g.,
heating/cooling, electromobility, appliances), which refer to the process of intelligently consuming energy at the time it is available. This
paper analyzes existing green planning systems, energy management applications, and future challenges deploying self-consumption
of renewable energy. We also present experiences of a green planning system we developed in-house. Our overview and categorization
will be helpful to a variety of researchers, practitioners, and policy makers to make their systems environmentally friendly.
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1 INTRODUCTION

Global Warming refers to an increase in global surface temper-
atures caused by humans that has progressively led to Climate
Change, which is defined as new weather patterns that persist
for an extended period of time and have an influence on the
environment and human health. CO2 levels have been steadily
rising since the Industrial Revolution (1760 – 1840 AD),
according to the Intergovernmental Panel on Climate Change1.
A key driver for the production of CO2 is the current human
activity, as 85% of CO2 emissions come from the burning of
fossil fuels with data from the US Environmental Protection
Agency2. Carbon dioxide traps solar radiation within the
atmosphere, resulting eventually to Global Warming: oceans
clean only ¼ of CO2 pollution, while trees another ¼. The
global greenhouse gas emissions originating from electricity
and heat production (25%), transportation (14%) and buildings
(6%), already make up almost half of the planets gas emissions
besides: agriculture (24%), industry (21%) and other energy
requirements (10%).

Green Planning refers to computational approaches that aim
to improve environmental quality and make rapid progress
towards sustainability. It is characterized by a longer-term
perspective, as it is designed to replace more conventional
methods for protecting the environment and natural ecological
values, by taking into consideration economic realities. Green
planning systems propose sustainable alternative techniques
to various modern activities and applications that are causing
damages to the biosphere [1]. It is an attempt to integrate the
scientific interests of society to develop intelligent strategies
that can achieve sustainable prosperity for the current and
future generations, while supporting the natural ecosystems. A
key driver for controlling the CO2 emissions is the uptake of
Internet of Things (IoT), which connect computing equipment

1. IPCC, URL: https://www.ipcc.ch/sr15/
2. US Environmental Protection Agency, URL: https://tinyurl.com/zkp5s5ru

Fig. 1. An example of a sustainable and cost-effective
green planning of appliances during the day that opti-
mizes self-consumption of renewable energy.

in a way it is able to “think”, “see”, “react”, “hear”, perform
various operations, as well as communicate using open proto-
cols. Thus, energy usage and CO2 emissions governed by IoT
infrastructure can be brought together under the same roof.
According to Gartner3, an average household in the developed
world owns approximately 5-10 internet-connected gadgets,
such as smart TVs, smartphones, smart-home devices, etc.,
and it is predicted that this number will escalate to 100 billion
connected smart devices by 2030 [2].

Self-consumption is the act of using local renewable energy
to operate devices (e.g., white appliances, HVAC, EV charg-
ing, IoT-enabled gadgets) during energy production. Thus, it
can promote the integration of variable renewables into the
grid and reduce the total costs of the energy system through
load shifting. Demand Response (DR) is an adjustment in
the energy consumption of an electric utility customer to
better match the power demand with the supply, by shifting
or reducing their electricity usage during peak periods in
response to time-based pricing rates [14]. However, without
further technical enhancements in DR the self-consumption
potential is limited. These types of solutions can accommodate

3. Gartner Inc., URL: https://tinyurl.com/5ykd62pc
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TABLE 1
Green Planning Systems and Energy Management Applications

Systems/Applications Algorithm/Technology User Comfort Energy Storage Renewable Energy User Preferences Perspective
Gemello [3] k-nearest neighbors algorithm Not considered × × × Long-term
Arup Smart Workplace Arup AI-powered tools Considered × × 3 Short-term
Deep Latent Generative Model [4] Variational recurrent neural net. Not considered × × × Long-term
GreenerBuildings Viterbi Algorithm Considered × × × Short-term
IoT-Based A/C System [5] Extreme Learning Machine Not considered × × 3 Short-term
ILPSS (HVAC) System [6] Integer Linear Programming Considered × × 3 Short-term
Google Nest Thermostat Google AI Learning Thermostat Considered × × 3 Short-term
Ecobee 3 Ecobee 3 AI Thermostat-IFTTT Considered × × 3 Short-term
Sunny Home Manager SMA Solar AI Technology Considered 3 3 3 Short-term
Edge-based HEMS [7] Dynamic Programming COP Considered 3 3 3 Short-term
EcoTour [8] Dijkstra’s algorithm Not considered × × 3 Short-term
OVO Energy-Vehicle to Grid OVO Green AI Technology Considered 3 3 3 Short-term
HEMS-Demand Side Manag. [9] Single Knapsack Algorithm Considered 3 3 × Short-term
HEMS-Multiple Knapsack [10] Multiple Knapsack-Ant Colony Considered × × 3 Long-term
HEMS-Multiple Users [11] 0-1 Knapsack-Genetic Algorithm Not considered × × × Short-term
HEMS-Renewable Energy [12] Binary Particle Swarm Considered 3 3 3 Short-term
IoT Meta-Control Firewall [13] Hill Climbing Algorithm Considered 3 3 3 Long-term

a larger share of self-consumption and also reduce additional
costs arising from the integration of photovoltaics. Information
and Communications Technology (ICT) pioneer solutions and
smart green planning systems are required in order to unleash
the full potential lying within the transition from passive
consumers to both active providers and consumers (i.e., pro-
sumers). However, widespread adoption of self-consumption
solutions may result in an unfair and unequal distribution of
network charges and taxes. Therefore, future energy policies
need to also deal with efficient cost reallocation [15].

Figure 1 shows how users can plan their home appliances
based on their daily solar power production in order to
consume energy more efficiently and consequently reduce both
CO2 emissions and electricity costs. The solid green color in
the plot indicates the solar energy produced and red dashed
color shows the energy supplied from the grid. Consequently,
minimizing the CO2 pollution in spaces where the human is
active (e.g., houses, offices, etc., in which people spend 80-
90% of their time) can positively impact climate change.

The efficient adaption of natural renewable sources, such as
wind, solar, vibration, and thermal, into the IoT infrastructure
is very encouraging, but challenging at the same time, as it
can potentially be time consuming or difficult to integrate
the requisite solution due to the surge of instantaneous power
production in vendor-specific devices. Furthermore, it may not
be always feasible to provide devices with continuous power
using natural renewable sources, that will lead to other issues
such as interruptible power supply due to the transmitting com-
bination of energy obtained from either the grid or batteries.
Consequently, system-level solutions are needed that will be
durable and resilient in the event of a power outage.

The work presented in this paper is focused on the ex-
position of numerous existing energy management systems
and the emerging field of green planning systems for self-
consumption of renewable energy. An overview of early so-
lutions of smart energy systems that will potentially emerge
is initially introduced. Emphasis was given at extending the
intelligent use of renewable energy, which will give rise to new
services and applications for a better quality of life. Further,
we describe our IoT Meta-Control Firewall (IMCF) system

[13], which aims to balance energy usage, comfort and CO2
emissions while satisfying the users’ Rule Automation Work-
flow (RAW) pipelines in a way that these do not collide with
some pre-configured long-term goals. The aim and outcome
of this article is to highlight the importance of the design
and development of effective green computing architectures,
the adaptation to natural renewable sources and that the power
management optimization, scalability and complexity are some
vital challenges that need to be conscientiously studied and
addressed in the close future. In summary, in this paper we
have the following contributions:

• We present, compare and discuss the emerging field of
green planning systems for self-consumption of renew-
able energy in regards to prediction, monitoring, schedul-
ing, energy-efficient operation and AI-enabled manage-
ment.

• We overview the novelties of our developed IoT Meta-
Control Firewall (IMCF) as a green planning system for
smart homes.

The remaining of the article is organized as follows:
Section 2 presents the background and other related work.
Section 3 introduces our developed IMCF framework, its
internal components, the AI-inspired algorithm and the system
architecture, while Section 4 concludes the article along with
several future challenges.

2 GREEN PLANNING SYSTEMS

In this section, we present various green planning systems
and energy management applications in regards to predictions,
monitoring, scheduling, energy-efficient operations and AI-
enabled management. The first two columns of Table 1,
present related systems and the adopted approach. The next
columns refer to whether the user comfort, energy storage
and renewable energy were considered in the research study,
respectively. Column 6, refers to whether the proposed ap-
proach takes into consideration any user preferences, or if
the system acts completely autonomous. Finally, column 7
emphasizes the long-term and short-term planning perspective
of each work. Particular focus is given on Home Energy
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Fig. 2. An example of a green energy management system that makes use of photovoltaic technology in combination
with residential energy storage and vehicle to grid technology considering user preferences, comfort levels, historical
consumption patterns, and the weather forecast.

Management Systems (HEMS), since these expose a growing
industry in the modern era of smart environments and smart
grids (see Figure 2). Most systems consider user comfort with
user preferences, few consider energy storage and renewable
energy and only four consider the long-term perspective, where
only one combines it with consumption of renewable energy.

2.1 Smart Home Energy Predictions & Monitoring
Systems

In this subsection, a general overview on energy prediction of
smart buildings is presented. Gemello [3], estimates a home’s
energy breakdown by comparing it to similar households with
a hardware-based disaggregation approach. The Arup Smart
Workplace4, is a smart IoT desk that improves the occupants’
satisfaction with the environment, health and productivity
by personalizing the environment based on their monitored
preferences. A deep latent generative model for energy dis-
aggregation based on variational recurrent neural networks
[4], accurately predicts energy consumption of appliances
that consume less power and have no discernible repeating
pattern. The latent variable abstractions help in achieving good
prediction performance on previously unseen data.

GreenerBuildings5, a project funded by the European Com-
mission, aims at substantial energy savings in commercial
and public buildings that involve highly dynamic patterns. It
develops an integrated framework that uses energy-harvesting
sensors to realize energy-aware adaptability, building-context
and operator activity recognition, and embedded software for
the coordination of hundreds of building-distributed intelli-
gent devices. The project’s methodological principles include
thermodynamic building simulations and occupant-behavior,
living-lab validations, and building-wide dense sensing of
activity. Consequently, existing buildings will be retrofitted
with an energy-aware framework, enabling the evaluation of
theoretical and experimental findings in regards to energy-
saving potentials while addressing user comfort.

4. Arup Smart Workplace, URL: https://tinyurl.com/y5cz645c
5. GreenerBuildings, URL: https://cordis.europa.eu/project/id/258888

2.2 Smart Heating, Ventilation, and Air Conditioning
(HVAC) Scheduling

HVAC systems utilize more than 60% of the buildings’ power
consumption, and since this percentage is likely to rise in the
future, it is crucial to optimize their energy performance and
their effective operation. Buildings account approximately for
75% of the community’s electricity, and about 41% of the
community’s overall power consumption, which is valued at
≈ $431.1 billion in the United States. With home automation
intelligent apps and HVAC system incentives, energy savings
of up to 40% can be realized [5]. Smart thermostats can
have a significant impact on users’ energy consumption when
it comes to residential automation techniques. In 2012, ap-
proximately 1.5 million smart automation systems for house-
holds were setup in the United States. The Integer Linear
Programming for Smart Scheduling (ILPSS), is a solution for
improving the duty cycle of the HVAC equipment, optimizes
energy consumption and keeps the temperature within the
users’ comfort zone [6].

2.3 Smart Thermostats

The Nest Learning Thermostat6 is a self-learning and pro-
grammable Wi-Fi-enabled thermostat that optimizes heating
and cooling to efficiently conserve energy. It learns users’
behavior patterns and preferred temperatures over the course
of a few days and then creates a timetable for their HVAC
equipment. In households with central air conditioning, Nest
Thermostat savings are shown to be equal to 10% -12%
of heating usage, while electric savings are equal to about
15% of cooling usage. Another smart thermostat with sim-
ilar functionalities is the Ecobee37; its greatest feature is a
remote sensor, which detects temperature and movement in
other rooms and automatically re-programs. According to an
analysis conducted in 2013 in the United States, Ecobee3 users
saved up to 23% on their heating and cooling bills. These
types of thermostats, however, do not allow individuals to

6. Google Nest Learning Thermostat, URL: https://tinyurl.com/2w9k5n4p
7. Ecobee3, URL: https://tinyurl.com/kz3nun
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adjust their comfort choices and meet their long-term energy
planning goals considering at the same time the carbon dioxide
emissions. Furthermore, they require the collection of learning
data from operators, which may introduce privacy concerns.

2.4 Photovoltaic Home Energy Management

Residential photovoltaic (PV) installations are a very promis-
ing option to locally generate and consume cost-effective and
sustainable energy. The process of balancing the mismatch
between demand and supply of energy is a crucial technical
matter related to the integration of renewable energy systems
into local electricity networks. The matching of renewable
energy with residential consumption can be accomplished
through multiple ways such as: (i) vehicle to grid technologies;
(ii) residential storage systems, like batteries, in combination
with PV systems; or (iii) by using community-based storage
systems.

The SMA Sunny Home Manager8 (HM) controllers monitor
power flows, specifically the generation of AC power by
inverters and the consumption of AC electricity by households
using an energy meter. Then, HM handles the energy con-
sumption workloads respectively (e.g., plans the operation of
a smart car charger or a washing machine so that solar power
self-consumption is optimized). This is accomplished through
the use of its open Simple Energy Management Protocol
(SEMP) or the industry-wide adopted EEBUS9 protocols via
its KEO reference implementation. These protocols, on the
other hand, are designed for load management inside smart
environments rather than assisting individuals meet long-
term energy (power consumption) goals and restricting CO2
emissions.

In [7], an energy management edge-based system is pro-
posed, that allows electricity cost reduction, saves budgets on
building up the infrastructure and also takes into account user
preferences. A load shifting approach has been employed on
an edge gadget, and solar power is integrated into a home
energy system as a cost effective technique. A location-aware
non-intrusive load monitoring (NILM) algorithm was used to
attain energy disaggregation at different periods throughout the
day, lowering capital investment on hardware equipment like
smart meters and sensors.

2.5 Smart-Green Mobility

Eco-routing is a smart and a very efficient method to re-
duce automobile fuel consumption and thus greenhouse gas
(GHG) emissions. EcoTour is an application that annotates an
OpenStreetMap representation of a road network using eco-
weights based on fuel consumption data and global navigation
satellite system, collected from automobiles traveling in the
road network, thus enabling ecorouting. It provides the fastest
route, the shortest route, and the eco-route, additionally to
various other statistics for each route [8]. Moreover, OVO
Energy-Vehicle to Grid10 is a system that can significantly

8. SMA Sunny Home Manager, URL: https://tinyurl.com/9fj4uj83
9. EEBUS, URL: https://www.eebus.org/technology/
10. OVO Energy-Vehicle to Grid, URL: https://tinyurl.com/9m9d4bnk

reduce environmental impact. Fossil fuel power stations are
firing up to supply appliances across the country with energy.
The OVO’s “vehicle to grid charger” knows that user’s electric
vehicle’s giant battery has some charge left over, so instead
of buying energy, it decides to sell it at times where the value
and demand are high. In that way, users are actually providing
power to the grid. On the other hand, when energy is cheaper
and more likely to be generated from renewables, then OVO
charges up user’s electric vehicle. Consequently, OVO users
can save enough to charge their cars for free.

2.6 AI-Enabled Energy Management Systems
Researchers incorporate different algorithms for efficient
power management. The research approach in [9], focuses on
a HEMS coupled with Renewable Energy Sources for efficient
demand side management in smart grids. A single Knapsack
method was used to obtain an energy minimization cost model,
based on the total consumed energy of appliances. Furthermore
in [10], the authors kept the total power consumption of
each household device below a pre-configured threshold with
maximum possible benefit, by tackling the matter for each
scheduled hour of a day. The ant colony optimization approach
was used to solve multiple knapsack problems, allowing
efficient appliances scheduling. A similar work was published
in [11], where the authors mathematically formulated the
load scheduling problem as a knapsack challenge, which was
then solved using a Genetic Algorithm (GA). Evolutionary
algorithms, such as GA, have the ability to search the objective
space of complicated problems more efficiently in the sake
of utilizing more computational resources compared to other
mathematical methods.

An optimal appliance usage strategy has been introduced
by [12], based on binary particle swarm algorithm, taking into
consideration the interests of energy suppliers, customers, and
renewable resources. The proposed system satisfies the user’s
requirement for the least tariff as well as the demand for
energy shifting or reduction, allowing for peak load shaving
and thus reducing the household payments significantly. Fur-
thermore, our in-house developed innovative system, coined
IoT Meta-Control Firewall (IMCF) [13], aims to schedule
comfort preferences of users in smart buildings (expressed in
the form of so called Rule Automation Workflows - RAW), and
meet various short and long term energy objectives. A more
detailed analysis of IMCF algorithm and system architecture
follows in Section 3.

3 THE IOT META-CONTROL FIREWALL
(IMCF)
The importance of self-consumption has been highlighted
by the advancement of renewable energy infrastructure in
smart environments. The comfort preferences of users are
frequently specified in the manner of Rule Automation Work-
flows (RAW), which are software rules dictating how and
when IoT gadgets must function to allow operators to meet
their desired levels of comfort, as opposed to self-consumption
directives. We have proposed the IoT Meta-Control Firewall
(IMCF) [13], which aims to bridge this gap and strike a
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Fig. 3. (left) IMCF Graphical User Interface integrated in OpenHAB; (right) Dashboard for smart environment
integrated with Anyplace Viewer and Meta-Rule-Table Configurator

balance between power usage, comfort and CO2 emissions
in satisfying the users’ RAW pipelines so that these do not
collide with the pre-configured long-term goals. Particularly,
our framework incorporates two internal components: (i) the
Amortization Plan (AP) algorithm, which is responsible for
calculating the user’s maximum energy budget per computed
time frame; and (ii) the Energy Planner (EP) algorithm, which
generates an energy-efficient plan considering users’ comfort
levels.

In IMCF, a user-operator starts out by setting an Energy
Consumption Profile (ECP), and a vector of RAW rules, named
Meta-Rule Table (MRT). The high-level goal is to discover
which MRT rules should be dropped in order for the user to
stay within the pre-configured energy budget based on the ECP
history. To this end, a smart search algorithm is employed,
which traverses an exponentially huge search space of multiple
combinations, quickly identifying the rules that should be
discarded.

3.1 System Architecture
Our system architecture comprises of a full-fledge local con-
troller developed in openHAB’s11 internal stack, which is an
intelligent home automation framework, and IMCF, which is
a green Internet-based management system.
Local Controller: is a software based in java installed on a de-
vice, running on the user’s local network. The Local Controller
is communicating directly with the IoT appliances to instruct
them according to the user configured preferences. A user-
operator will normally download the openHAB application,
for Android or iOS, and use the Local Controller to interact
with the IoT devices. In case that a user’s application is out of
the smart space bounds, the Network Address Translation and
network firewall will prevent the user from communicating
with the controller. As such, the user’s application establishes
a connection with the Cloud Controller, which is a public
Internet server capable of communicating and controlling the
Local Controller remotely.
The IMCF Component: we have implemented a software
extension to the Local Controller in order to enable the

11. OpenHAB, https://openhab.org

adaptation of users’ comfort preferences to meet the long-term
energy planning goals. Its design enables the encapsulation of
the Energy Planner (EP) algorithm implementation but also
the GUI and storage as necessary to enable interaction with
the system by the user. The EP, which is developed as a java
library, retrieves user configurations from a MariaDB local
persistency layer. The user populates the storage layer with
the application, which has been set up in such a way that
it integrates seamlessly the MRT rule definition procedure
over a web-based GUI (see Figure 3). The Laravel PHP web
framework is used to write the GUI code. The GUI code
execution relies on a web-server supporting PHP while for the
IMCF EP library a cron job daemon is assumed that reliably
invokes the Energy Planning in fixed time intervals. In the
event that devices must be switched on or off, the IMCF
system uses “Binding-mode” or “Extended mode”.

3.2 The IMCF Algorithm

The IMCF algorithm [13] consists of: (i) the Amortization
Plan (AP); and the (ii) the Energy Plan (EP). The maximum
energy budget constraint (coined Ep) is determined by the
amortization plan using a pre-defined amortization formula.
Then an AI procedure is executed every t seconds (e.g., yearly,
monthly, daily, hourly preference) over a time period p (i.e.,
the execution’s duration), where N is the set of all meta-rules
and D denotes the number IoT devices in total, to generate an
energy plan solution s∗ for minimizing the Convenience Error

minFCE =

t∑
k=1

(
1

N

N∑
i=1

D∑
j=1

cej(MRi)), (1)

where j is the device, and cej is the difference between the
desired output value Ωj

i ∈ < of a rule configured by a user
(temperature or level of light intensity) and the actual value
Oj

i ∈ < set by the controller, given by: ce = |Ωj
i | − |O

j
i |.

Subject to satisfying the Energy Consumption FE(s∗) ≤ Ep,
where:

FE =

t∑
k=1

(
1

N

N∑
i=1

D∑
j=1

ej(MRi)), (2)
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Fig. 4. Execution scenario of the IMCF framework where a user configures numerous meta-rules in MRT. The Energy
Planner utilizes the hill climbing approach to optimize user comfort and energy consumption.

MRi is the meta-rule, ej is the energy consumption, and Ep

denotes the total available energy budget for the entire period
p in which the algorithm is executed.

Amortization Plan (AP): The initial execution of AP ()
subroutine calculates the energy budget constraint Ep, while
considering a monthly residence Energy Consumption Profile
ECP . There are numerous amortization approaches that can
be applied, like Linear Amortization Formula, Balloon Linear
Amortization Formula, and ECP-based Amortization Formula.
Our approach can be integrated easily in smart actuation
platforms, since it does not depend upon training data and
only requires a MRT preference profile.

Energy Plan (EP): An energy plan solution is a vector
s =< s1, . . . , sN >. A vector element si denotes a meta-
rule in the MRT , where si = 0 means that at position i
of MRT table the meta-rule is ignored, and si = 1 means
at position i the meta-rule is adopted. We have applied a
hill-climbing algorithm, an iterative local search heuristic,
which does not require a target function (e.g., like A*), does
not require a learning history (such as respective Machine
Learning methods), and is straightforward to be developed in
a resource-constraint setting like smart local controllers (e.g.,
Raspberry). An initial solution s∗ is generated at the beginning
of the local search heuristic, which specifies the initial state
of the algorithm either randomly or deterministically. For
local optimization with neighborhoods that involve changing
up to k components of the solution, a hill-climbing local
search heuristic is used, also known as k-opt. The performance
metrics FCE and FE are used to evaluate each solution s
(see Figure 4). A solution s is considered to be better and
replaces the existing best solution s∗ if (FE(s) ≤ Ep) &&
(FCE(s) < FCE(s∗)). When τmax iterations are completed,
then the energy planner stops. Alternatively, the algorithm can
iterate until @s|FCE(s) < FCE(s∗).

We claim that the consumption of power by utilizing intel-
ligent approaches (i.e., green IoT actuations) can significantly
contribute to the ICT environmental impact, allowing people to
improve living conditions and sustainability, while respecting
the ecosystem and meeting the United Nations Climate Change
- Paris Agreement12 targets.

12. UNFCCC, URL: https://tinyurl.com/5aamruum

4 FUTURE CHALLENGES AND CONCLUSION

There are several challenges to be tackled before green
planning systems solely integrate into our society. In this
section, we present various major challenges related to green
management frameworks followed by our conclusion. These
challenges will channelize directions for future research stud-
ies.
Interoperability: Various communication technologies may
be adopted by different vendors, users and utility companies.
Thus, it becomes essential to satisfy interoperability and
compatibility so that numerous heterogeneous technologies
can coexist in green management frameworks assisting that
way the seamless integration of different systems.
Scalability: A system whose performance increases with
proportional hardware addition is said to be a scalable system.
Green planning systems involve huge numbers of devices and
users, and these numbers will keep growing drastically, hence
scalability becomes an issue. Scalability tests and experiments
conducted on small scale environments may not be able to
cope when used with an extensive amount of devices in a
realistic situation.
Interdisciplinary: Green planning systems involve various
stakeholders (organizations, societies, technologies, devices,
and frameworks). Hence, the interdisciplinary nature of this
research area gives rise to various challenges, such as the
integration of energy frameworks with actuation, control,
security, renewable sources, weather forecast, and peak load
schemes.
Security and Privacy: The interconnection among various
systems, devices or networks, raises security and privacy
concerns. The threat of cyber vulnerabilities for future green
management frameworks is a crucial matter that needs to be
addressed. The security matters may include electricity theft,
accessing smart metering data in an unauthorized fashion,
attacking energy storage facilities to affect power continuity,
or accessing smart home appliances controlled by an unautho-
rized individual. A person with malicious intents could access
and leak out sensible information.
Power Fluctuations: Natural renewable sources cannot al-
ways provide continuous power. Thus, the sudden rise or
fall of electrical power due to transmitting combination of
energy obtained from either the grid, photovoltaic modules, or
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batteries will lead to problems. Therefore, resilient and durable
green management frameworks should be able to efficiently
handle power fluctuations and outage events.

In this paper, we overviewed the emerging field of green
planning systems, which belongs to a new type of Internet-
based technology that aims to use computing resources ef-
ficiently in order to reduce energy consumption and CO2
emissions. A detailed analysis and comparison of the ex-
isting energy management frameworks and AI algorithms is
presented, showing that the field requires attention in respect
to long-term planning perspective, both in the academic and
industrial sectors. The intelligent self-consumption of renew-
able energy will assist in reducing peak loads and electricity
costs, as well as minimizing GHG emissions, and Green
Planning systems have an instrumental role in this process.
The IMCF algorithm, components, and architecture satisfy
long-term energy objectives while achieving high user com-
fort and economic advantages. The future of green planning
systems exposes various important challenges that need to be
tackled, such as interoperability, scalability, interdisciplinarity,
security and privacy. In conclusion, it is essential to allocate
more resources and efforts for developing more sustainable
frameworks and promoting environmental awareness in the
future, while considering complexity with multiple objectives
and constraints of real-life situations.
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