Optimized Query Routing Trees for Wireless
Sensor Networks

Panayiotis Andreou?®, Demetrios Zeinalipour-Yazti ®*,
Andreas Pamboris ”, Panos K. Chrysanthis ¢, George Samaras ®

& Department of Computer Science, University of Cyprus,
CY-1678, Nicosia, Cyprus

b Department of Computer Sc. and Engr., University of California - San Diego,
San Diego, CA 92093, USA

¢Department of Computer Science, University of Pittsburgh,
Pittsburgh, PA 15260, USA

Abstract

In order to process continuous queries over Wireless Sensor Networks (WSNs),
sensors are typically organized in a Query Routing Tree (denoted as T) that pro-
vides each sensor with a path over which query results can be transmitted to the
querying node. We found that current methods deployed in predominant data ac-
quisition systems construct 7" in a sub-optimal manner which leads to significant
waste of energy. In particular, since T is constructed in an ad-hoc manner there is
no guarantee that a given query workload will be distributed equally among all sen-
sors. That leads to data collisions which represent a major source of energy waste.
Additionally, current methods only provide a topological-based method, rather than
a query-based method, to define the interval during which a sensing device should
enable its transceiver in order to collect the query results from its children. We
found that this imposes an order of magnitude increase in energy consumption.

In this paper we present MicroPulse™, a novel framework for minimizing the con-
sumption of energy during data acquisition in WSNs. MicroPulse® continuously
optimizes the operation of T by eliminating data transmission and data reception
inefficiencies using a collection of in-network algorithms. In particular, MicroPulse™
introduces: i) the Workload-Aware Routing Tree (WART) algorithm, which is estab-
lished on profiling recent data acquisition activity and on identifying the bottlenecks
using an in-network execution of the critical path method; and ii) the Energy-driven
Tree Construction (ETC) algorithm, which balances the workload among nodes and
minimizes data collisions. We show through micro-benchmarks on the CC2420 ra-
dio chip and trace-driven experimentation with real datasets from Intel Research
and UC-Berkeley that MicroPulse™ provides significant energy reductions under a
variety of conditions thus prolonging the longevity of a wireless sensor network.

Key words: Query Routing Trees, Sensor Networks, Critical Path Method.

Preprint submitted to Information Systems 1 December 2010

1 Introduction

Recent advances in embedded computing have made it feasible to produce
small scale wireless sensor devices that can be utilized for the development
of environmental monitoring systems under diverse conditions. Sensor devices
are tiny computers, often as small as a coin or a credit card, that feature
a low frequency processor that reduces power consumption, an on-chip flash
memory for local storage, a wireless radio for communication, on-chip sensors,
and an energy source such as AA batteries or solar panels [33]. Large-scale
deployments of Wireless Sensor Networks (WSNs) have already emerged in
environmental and habitant monitoring [51,33], structural monitoring [27] and
urban monitoring [38]. Due to the limited energy source, WSN applications
have to be founded on the premise of energy-conscious algorithms.

A decisive variable for prolonging the longevity of a WSN is to minimize the
utilization of the wireless communication medium. It is well established that
communicating over the radio in a WSN is the most energy demanding factor
among all other functions, such as storage and processing [62,35,34,64,59]. The
energy consumption for transmitting 1 bit of data using the MICA mote [11]
is approximately equivalent to processing 1000 CPU instructions [34]. In order
to cope with this energy challenge sensing devices are forced to power-down!
their radio transceiver (transmitter-receiver) between consecutive data acqui-
sition rounds (i.e., epochs).

It has been shown that sensors operating at a 2% duty cycle can achieve life-
times of 6-months using two AA batteries [35]. Supplementary approaches to
cope with the energy challenge have been proposed at virtually all layers of the
sensing device stack ranging from the hardware layer [42,11] to the operating
system layer [23], the programming language [16], the network layer [66] and
the data management layer (e.g., storage [64,36], compression [14,46], query
processing [34,44,62,24,59,35,43,32,65] and prediction [18]). A general theme
in these supplementary approaches is to reduce the number of messages com-
municated between sensors prolonging in that way the lifetime of a WSN.

It is important to notice that the majority of existing approaches is established

* Contact author: dzeina@cs.ucy.ac.cy, tel: +357-22-892755, fax: +357-22-892701
Email addresses: panic@cs.ucy.ac.cy (Panayiotis Andreou),
dzeina@cs.ucy.ac.cy (Demetrios Zeinalipour-Yazti), apambori@cs.ucsd.edu
(Andreas Pamboris), panos@cs.pitt.edu (Panos K. Chrysanthis),
cssamara@cs.ucy.ac.cy (George Samaras).
! The notion of powering-down the transceiver can be interpreted in this work
either in a literal manner (i.e., the transceiver is completely powered-down) or
in a metaphoric manner (i.e., the transceiver is configured in low-power listening
mode [37] instead).

on the premise of Query Routing Trees (denoted as T), which provide each
sensor with a path over which query answers can be transmitted to a cen-
tralized querying node (i.e., sink). Our study reveals that predominant data
acquisition frameworks [59,34,35] have overlooked the important parameter
of constructing efficient query routing trees and that negatively impacts the
energy efficiency of these systems. In particular, since T is constructed in an
ad-hoc manner there are two major sources of inefficiencies:

e Data Reception Inefficiencies: T structures do not define the waking
window T of a sensing device (i.e., the continuous interval during which a
sensor node has to enable its transceiver, collect and aggregate the results
from its children, and then forward these results to its own parent). Note
that 7 is continuous because it would be very energy-demanding to suspend
the transceiver more than once during the interval of an epoch (as shown in
Section 7.1 with a series of micro-benchmarks). Consequently, 7 is an over-
estimate that leads to significant energy waste. For instance, a typical query
with an epoch of 31 seconds over a three-tier network in TinyDB [35,34],
will enforce each sensor to activate its transceiver for as much as 10 seconds
while the required 7 interval might only be a few milliseconds (as shown in
Section 4.1).

e Data Transmission Inefficiencies: 7' structures are constructed in an
ad-hoc manner and therefore there is no guarantee that the query workload
will be distributed equally among all sensors. That leads to data collisions
during transmission which represent a major source of energy waste. For
instance in Section 7.1, we show that the execution of a query over a node
with 10 children will lead to a 48% loss rate of data packets, while executing
the same query over a node with 100 children will lead to a 77% loss rate.
These figures translate into an approximately threefold increase in energy
demand due to inevitable re-transmissions of data packets. Consequently,
unbalanced trees can severely degrade the network health and efficiency.

Contributions: In this paper we present MicroPulse®, a novel framework
for minimizing both the aforementioned sources of inefficiencies. The main
intuition behind our framework is to continuously optimize the operation and
structure of T by utilizing a collection of in-network processing algorithms. In
particular, MicroPulse™ introduces:

e The Workload-Aware Routing Tree (WART) algorithm, which min-
imizes data reception inefficiencies by profiling recent data acquisition ac-
tivity and by identifying the bottlenecks using an in-network execution of
the critical path method. In particular, it generates a time-synchronized
topology in which WSDs know exactly when and for how long they should
enable their transceiver; and

e The Energy-driven Tree Construction (ETC) algorithm, which min-

imizes data transmission inefficiencies by balancing the workload among
participating nodes. In particular, it generates a near-balanced tree topol-
ogy in which data collisions are minimized, thus WSDs have the capability
to power down their transmitter much earlier.

Energy-efficient query routing trees are useful in a plethora of stationary sensor
network systems. Below we show their applicability in the context of a Bio-
Harvesting Sensor Network [55]. Additionally, we explain how such structures
can be adapted in order to become the foundation of future applications in
People-centric Sensing [7,6] scenarios.

Example 1 - Voltree Climate Sensor Network: Recently, Voltree Power [55]
has engineered a bio-energy harvesting technology that allows sensor devices
to recharge themselves by collecting the energy that is naturally produced by
living trees or other large plants. This alternative, minimizes the cost of replac-
ing batteries frequently, especially in large-scale deployments. Many Voltree
devices form a wireless mesh network which is composed of many inexpen-
sive sensor nodes that collect and report data on temperature, humidity, wind
speed and direction. Data collected by the nodes are recursively transmit-
ted from each node to its neighbors (i.e., forming a query routing tree) until
these measurements reach a central base station that records the data for
further analysis. Such networks have already been deployed by the United
States Department of Agriculture (USDA) at five different sites [55]. These
networks complement the USDA Forest Service’s Remote Automated Weather
Stations network. The Voltree Climate Sensor Network deploys Query Routing
Tree structures much like its predecessor technology, Battery-powered Wire-
less Sensor Networks and constructing optimized trees is consequently of major
importance in this work.

Example 2 - People-Centric Sensing: People-centric sensing [7,6], aims
to support sensor-enabled applications that engage the general public through
the use of their own personal mobile devices. The recent miniaturization and
integration of sensors into popular consumer mobile devices (e.g., iPhone, HTC
Touch Pro) has enabled a myriad of new sensor based applications for personal,
social and public sensing. These applications can be utilized for increasing
the sensing coverage of large public spaces and collect targeted information
about their mobile device owners. The information can be then uploaded to
a centralized database system or exchanged with neighboring mobile devices.
What is really important, is that these environments allow new levels of data
sharing among commodity devices. Specifically, a particular device can request
sensor data from available neighboring devices through the establishment of
an adhoc link (e.g., through Bluetooth or Wi-Fi).

Figure 1, illustrates a futuristic people-centric sensing scenario where cyclists
journey through the main streets of a city. Each cyclist is equipped with

Fig. 1. People-centric Sensing Example: Cyclists collect data through their
sensor equipped mobile devices (e.g., COz level) during their ride. A given cyclist
can query its neighborhood by constructing an ad-hoc query spanning tree.

a mobile device that has the ability to interact with its integrated sensors
during the ride. The measurements retrieved from these sensors can be used
to quantify various aspects of the cyclic performance (e.g., current/average
speed, heart rate, burned calories) as well as the environmental conditions
(e.g. COq level, car density) during the journey. The continuous sharing of
these collected data can be utilized to create collaborative scenarios (e.g.,
identify routes with low CO; levels in the city).

A central component to realize such scenarios is the availability of some high-
level communication structure, such as query routing trees presented in this
work. Such structures can serve as a primitive mechanism for percolating query
results to nodes that query the network. It must be noted that in People-
centric sensing applications, the topology of the network might change fre-
quently. Consequently, it might be necessary to complement these structures
with update mechanisms (e.g., reconstructing the query routing tree periodi-
cally either completely or incrementally), although a more detailed exploration
of this aspect remains outside the scope of this paper.

This paper builds on our previous work in [63,4], in which we presented the
preliminary design of the MicroPulse framework that minimizes the energy
consumption by tuning the waking windows locally at each sensor. In this
paper, we introduce several new improvements and extensions that are sum-
marized as follows:

e We present a new tree-balancing construction algorithm, coined ETC, which
investigates the effect of balanced routing trees in wireless sensor networks.
This algorithm constructs near-balanced tree topologies minimizing in that

way the inherent collisions among neighboring nodes in unbalanced tree
topologies.

We combine the ETC algorithm with our earlier work in MicroPulse and
create a uniform framework coined MicroPulse™ that takes a holistic view on
optimizing query routing trees in Sensor Networks. In particular, MicroPulse™
optimizes both data reception deficiencies and data transmission deficien-
cies.

We introduce an elaborate experimental study and solid experimental evi-
dence for the motivation and efficiency of our propositions using a variety of
real traces, querysets and a series of real micro-benchmarks on the CC2420
radio transceiver [52]. Finally, we perform an extensive experimental assess-
ment of ETC both in isolation and in integration with the MicroPulse™
framework.

For completeness, we provide an overview of related work that has been
proposed at different layers of the communication stack (i.e., physical layer,
network layer, transport layer, etc.) We also qualitatively explain the dif-
ferences and similarities of these techniques compared to the MicroPulse™
framework.

Overall, this paper makes the following contributions to the state-of-the-art:

We formulate the problem of adapting the waking window 7 of a sensing
device in order to conserve energy that can be used to prolong the longevity
of the network and hence the quality of results. We solve the waking window
problem by proposing the WART algorithms.

We formulate the problem of constructing and maintaining an energy effi-
cient query routing tree in a wireless sensor network. We solve this problem
by introducing the ETC algorithm.

We experimentally validate the efficiency of our propositions with an ex-
tensive experimental study that utilizes real sensor readings and a series of
microbenchmarks. Our results are useful to any type of multi-hop network
that relies on Query Routing Trees for data acquisition.

Roadmap: Section 2 formalizes our system model. Section 3 presents an

overview of MicroPulse™ as well as a description of its main components.
Sections 4 and 5 thoroughly describe the WART and ETC algorithms that
comprise the MicroPulse™ framework. Section 6 presents our experimental

methodology whereas Section 7 the results of our evaluation. Section 8 overviews
the related work of the paper while Section 9 concludes this paper.

2 System Model

In this section we will formalize our system model and the basic terminology
that will be utilized in the subsequent sections. The main symbols and their
respective definitions are summarized in Table 1.

Let S denote a set of n sensing devices {s1, sa, ..., 5, }. Assume that s; (i < n)
is able to acquire m physical attributes {aq, as, ..., a,, } from its environment at
every discrete time instance t. This generates at each ¢ and for each s; (i < n)
one tuple of the form {¢, ay,as,...,a,}. This scenario conceptually yields an
n x m matrix of readings R:=(S;j)nxm for each timestamp. This matrix is
horizontally fragmented across the n sensing devices (i.e., row ¢ contains the
readings of sensor s; and R = U, R;). Now let G = (S, E) denote the net-
work graph that represents the implicit network edges E of the sensors in S.
The edges in F are implicit, because there is no explicit connection between
adjacent nodes, but nodes are considered neighbors if they are within commu-
nication range (i.e., a fundamental assumption underlying the operation of a
radio network).

A user specifies a continuous query () to be evaluated once during the interval
of an epoch (denoted as e), which is the time interval after which each s;
(1 < n) will re-compute Q. For simplicity let us adopt a declarative SQL-
like syntax (similar to [35,59]) to express the ideas presented in this paper
in brevity. For instance, the following query declares that each sensing device
should recursively collect the node identifier and the temperature from its
children every 31 seconds and communicate the results to the sink.

SELECT nodeid, temp
FROM sensors
EPOCH DURATION 31 seconds

Note that our model also supports continuous aggregate queries. For instance,
the following query declares that each sensing device should aggregate the
average light measurement for each room from its children every 31 seconds
and communicate the results to the sink.

SELECT roomid, AVG(light)
FROM sensors

GROUP BY roomid

EPOCH DURATION 31 seconds

Essentially, our framework supports any type of query as long as the query
produces a continuous result which is percolated to the sink. Based on these
continuous transmissions, we profile the workload of each sensor and compute
the critical path.

Table 1
Definition of Symbols Utilized in the Paper

| Symbol | Definition |

Q A Continuous Query
n Number of Sensors S = {s1,s2,...,8n}
s Sensor number i (sp denotes the sink).
m Number of sensor recordings {aj,as,...,am}
e Epoch duration of query Q

T=(S, E) Query Routing Tree (S=vertices, E=edges)
d Depth of the routing tree T'
w; Wake-up time of sensor s;
T; Waking window of sensor s;
P Total time needed to answer query Q

children(s;) Children List of sensor s;

APL(s;) Alternate Parent List of sensor s;

B Balanced Branching Factor of network S

A user submits () at some centralized querying node (denoted as sg, or sink
node) prior deployment and the system then initiates the execution of @) by
disseminating it to the n sensors. In particular, the sink sends () to one sensor
s1. Subsequently, s; recursively forwards) to all of its neighbors until all n
sensors have received the given query. Without loss of generality, we adopt
the First Heard From (FHF) mechanism which is utilized in a variety of data
acquisition frameworks such as [35,59,65,62] and where each sensor s; selects
as its parent the first node from which) was received. This creates an acyclic
subset of the communication graph G (i.e., a spanning tree) which is denoted
as T' = (S, E’), where E' C E. Each s; also maintains a Child Node List (de-
noted as children(s;)), which is trivially constructed during the creation of T’
(i.e., using an acknowledgment from each child to its parent). In more recent
frameworks, like GANC [43] and Multi-Criteria Routing [32], T' can be con-
structed based on query semantics, power consumption, remaining energy and
others. In more unstable topologies a node can maintain several parents [10]
in order to achieve fault tolerance but this might impose some limitations on
the type of supported queries. We additionally supplement each sensor s; with
an Alternate Parents List (denoted as APL(s;)). The APL list is constructed
locally at each sensor by snooping (i.e., monitoring the radio channel while
other nodes transmit and recording neighboring nodes) and comes at no extra
cost. Such a list will be utilized by the ETC algorithm we propose in this
paper but could also be utilized to select alternate parents in cases of failures.

3 The MicroPulse™ Framework

In this section we provide an overview of the MicroPulse™ framework. In par-
ticular, we will introduce the Workload-Aware query Routing Tree (WART) al-
gorithm and the Energy-driven Tree Construction (ETC) algorithm. We shall
start with a detailed analysis that reveals the motivation behind our proposi-
tions and then provide an outline for each individual algorithm.

3.1 Motivation and Preliminaries

We have already defined that the continuous interval during which a sensing
device s; (i < m) enables its transceiver, collects and aggregates the results
from its children, and then forwards them all together to its own parent is
defined as the waking window 7. It is important to mention that the exact
value of 7 is query-specific and can not be determined accurately using current
techniques. For instance, s; (i < n) does not know in advance how many tuples
it will receive from its children. Choosing the correct value for 7 is a challenging
task as any wrong estimate might disrupt the synchrony of the query routing
tree.

Therefore, we aim to automatically tune 7, locally at each sensor without
any a priori knowledge or user intervention. Note that in defining 7 we are
challenged with the following trade-off:

e Early-off Transceiver: Shall s; (i < n) power-off the transceiver too early
reduces energy consumption but also increases the number of tuples that are
not delivered to the sink. Thus, the sink will generate an erroneous answer
to the query @; and

e Late-off Transceiver: Shall s; (i < n) keep the transceiver active for too
long decreases the number of tuples that are lost due to powering down
the transceiver too early but also increases energy consumption. Thus, the
network will consume more energy than necessary which is not desirable
given the scarce energy budget of each sensor.

The WART algorithm presented in this paper utilizes a novel algorithm for the
dynamic adaptation of the 7 values and is established on profiling recent data
acquisition activity and on identifying the bottlenecks using an in-network
execution of the Critical Path Method.

The Critical Path Method (CPM) [20] is a graph-theoretic algorithm for schedul-
ing project activities. It is widely used in project planning (construction,
product development, plant maintenance, software development and research
projects). The core idea of CPM is to associate each project milestone with
a vertex v and then define the dependencies between the given vertices using
activities. For instance, the activity v; <= v; denotes that the completion of

v; depends on the completion of v;. Each activity is associated with a weight

(denoted as we@ht) which quantifies the amount of time that is required to

complete v; assuming that v; is completed. The critical path allows us to de-
fine the minimum time, or otherwise the maximum path, that is required to
complete a project (i.e., milestone vy). Any delay in the activities of the critical
path will cause a delay for the whole project. In order to adapt the discussion
to a sensor network context assume that each sensor s; is represented by a

CPM vertex. More formally, we map each s; to the elements of the vertex set
V = {v1,v9,...,v,} using a 1:1 mapping function f :s; — v;, i < n. Also, let
the descendent-ancestor relations of the sensor network be denoted as edges
in this graph.

Figure 2 illustrates an example which will be utilized throughout the paper.
The weights on the edges of the figure define the workload of each respec-
tive node (as the required time to propagate the query results between the
respective pairs). It is easy to see that the total time to answer the query
at the sink in the given network is at least =99, since the critical path is
So L S1 L S3 2 sg. Having this information at hand, enables the scheduling
of transmission between sensors. In particular, consider sy that operates solely
in reception mode. Given that the maximum workload it expects from its only
child s; is 40, s only needs to enable its transceiver in the interval [59..99].
Similarly, s; which operates in both transmission and reception modes, needs
to enable its transceiver for listening during the interval [29..59] to accommo-
date the most demanding child s3 with workload 30. Additionally, it needs
to enable its transceiver for transmitting to its own parent during the inter-
val [59..99]. Consequently, s; needs to keep its transceiver enabled during the
interval [29..99]. A similar intuition also applies to other nodes.

Note that although the listening interval for each sensor s; (i < n) will be
scheduled by our approach, each sensor also keeps track of which children s;
(j < n) have already responded. When all children s; (j < n) have reported
their results to their parent then the parent node s; (i < n) can immediately
turn off its receiver as it does not expect any additional results from the s;s
(7 < n). Yet, it is obligated to wait for the right listening interval of its parent
(i.e., parent(s;)) before proceeding with the transmission of its own result.
Finally, we would like to point out that a sensor s; (i < n) might delay the
transmission of its results for a number of reasons (e.g., sensor malfunction).
In these cases, s; will enable its transceiver only if it can catch the listening
interval of its parent node (as the parent of s; (i < n) will only be available
during the given time interval).

Finally, note that the critical path allows a sensor s; (j < n) to identify
the interval during which its parent s; (i < n) is expected to enable its own
transceiver for reception. This is very useful because in the subsequent epochs
and under a different workload than the one utilized to compute its current
7 interval, s; can identify with local knowledge if it can still deliver the new
workload without notifying s; to adjust its 7 interval.

It should be noted that the edges in Figure 2 have different weights. This is very
typical for a sensor network as the link quality can vary across the network [51].
Another reason is that some sensors might have a different workload than
other sensors. Note that our scheduling scheme is distributed which makes it

10

i Critical Path
Sin l}o (s0)

/éb\ Soislji%jiss
e
o ob b

w =99
Fig. 2. Nine sensing devices (shown as vertices) and the respective workload between
them (shown as edges) in order to answer some continuous query @ at the sink (sp).
The WART algorithm utilizes this information in order to locally adapt the waking
window of each device using the Critical Path Method.

fundamentally different from centralized scheduling approaches like DTA [61]
and TD-DES (8] that generate collision-free query plans at a centralized node.
Additionally, our approach is also different from techniques such as [45] which
segment the sensor network into sectors in order to minimize collisions during
data acquisition.

Although the proposed approach significantly reduces the energy consumption
of the sensors by scheduling communication activities based on the workload,
it still does not take into account the fact that the tree topology might be
unbalanced. To facilitate our description, consider the example depicted on
Figure 3 (left), which illustrates the initial ad-hoc query routing tree T' created
on top of a 10-node sensor network with the First-Heard-From approach. In
the example we observe that node s, is inflicted with a high workload (i.e., 5
child nodes) while other nodes at the same level (i.e., s3 and s4), only have
zero and one child nodes respectively. Notice that both sg and s19 are within
communication range from ss (i.e., the dotted circle), thus these nodes could
have chosen the latter one as their parent. Unfortunately, the FHF approach is
not able to take these semantics into account as it conducts the child-to-parent
assignment in a network-agnostic manner. Additionally, unbalanced topologies
pose some important energy consumption challenges which are summarized as
follows:

e Decreased Lifetime and Coverage: Since the majority of the energy
capacity is spent on transmitting and receiving data, the available en-
ergy of sensors with a high workload will be depleted more rapidly than
the others. For example, in Figure 3 (left) sensor sy’s energy will be de-
pleted 93/12=7.75 faster than s, that is (X707 (s, s5) + (s2,51)) /
(Zfiioldren(sg’)(si, s3) + (s3,51)), and 3.72 times faster than s4 (i.e., 93/25). In
addition, if sy’s energy is depleted and no alternate parents are available for
sensors s;_7 then the coverage of the network will be reduced dramatically.

e Increased Data Transmission Collisions: An unbalanced workload in-

11

SinkT (s0) SinkT (s0)
40 40
A

41 12 21

PR R
0 5o 6 doebe b

Fig. 3. Left: The initial ad-hoc query routing tree constructed using the First Heard
From method. Right: The optimized workload-aware query routing tree constructed
using the in-network ETC balancing algorithm.

creases data transmission collisions which represent a major source of energy
waste in wireless communication. Our micro-benchmarks on the CC2420 ra-
dio transceiver, presented in Section 7.1, unveil that crowded parent hubs
like s might yield loss rates of up to 80%, thus inflicting many re-transmissions
to successfully complete the data transfer task between nodes.

3.2 Outline of Operation

We shall now outline the operation of our framework in which the execution
of the ETC algorithm is succeeded by the execution of the WART algorithm.
In particular, the ETC algorithm is executed as a two step process that is
summarized as follows:

(1) Discovery Phase: In this phase, the sink queries the network for the
total number of sensors n and the maximum depth of the routing tree
d. When variables n and d are received, the sink calculates a uniform
Optimal Branching Factor (3) for each sensor.

(2) Balancing Phase: In this phase, the sink disseminates the § value back
to the n nodes. Upon receiving /3, each sensor conducts a number of local
rearrangements to its local topology in order to create a near-balanced
topology (a formal definition is provided in Section 5.1).

As soon as the ETC module completes the reconstruction of the query routing
tree, our framework executes the WART algorithm which disseminates the
continuous query () to the network. WART then determines the period during
which each s; should wake up and the precise duration of this wake-up. In
particular, WART is executed as a 3-phase process that is summarized below:

(1) Construction Phase: In this phase, the sink constructs a query routing
tree and then queries the network for the total workload value).

12

(2) Dissemination Phase: The sink disseminates ¢ to the network and
each sensor tunes its waking window accordingly.

(3) Adaptation Phase: This phase is executed either periodically or when
a topology change occurs. With this step each sensor adapts its waking
window 7 according to the new workload.

The next two sections will provide a more thorough description of the indi-
vidual steps of our algorithms. Although the WART algorithm succeeds the
operation of the ETC algorithm we shall present them in opposite order as
the WART algorithm determines the most significant energy savings in the
MicroPulse’ framework.

4 The Workload-Aware Routing Tree (WART) Algorithm

In this section we describe the first algorithm of the MicroPulse™ framework,
coined WART. The objective of the WART algorithm is to generate a time syn-
chronized topology in which sensing devices know exactly their waking window
(i.e., they know when and for how long they should enable their transceiver).
We start out with background work on waking window mechanisms in pop-
ular data acquisition systems such as TAG [34,35] and Cougar [59] and then
describe the steps of our WART algorithm. For the subsequent sections let us
assume that some arbitrary query () has already been disseminated to the n
sensors of the wireless sensor network.

4.1 Preliminaries and Background

In this subsection we will describe the waking window mechanism of the TAG
and Cougar frameworks.

Tiny aggregation (TAG): In this approach, the epoch e is divided into d
fixed-length time intervals {ey, e, ..., eq}, where d is the depth of the routing
tree rooted at the sink that conceptually interconnects the n sensors. The
core idea of this framework is summarized as follows: “when nodes at level
i+1 transmit then nodes at level i listen”. More formally, a sensor s; enables
its transceiver at time instance w; = |e/d]| * (d — depth(s;)) and keeps the
transceiver active for 7; = |e/d] time instances. Note that 37, (e;), where e
defines the epoch at level 7, provides a lower-bound on e, thus the answer will
always arrive at the sink before the end of the epoch. Setting e as a prime
number ensures the following inequality 30_,(e;) < e, which is desirable given
that the answer has to reach the sink at time instance e.

13

Level O TAG Sk COugalrsink

: 0
° Micropulse °© ©
Level O Asink
Level 1 d | Listening
Level 2 Hl Processing
Leve 3 [Transmitting
0 e

Fig. 4. The Waking (Listening) Window (7) in TAG, Cougar and MicroPulse™’s
WART algorithm.

For instance, if the epoch is 31 seconds and we have a three-tier network (i.e.,
d=3) like Figure 4 (top, left), then the epoch is sliced into three segments
{10,10,10}. During interval [0..10), nodes at level 3 will transmit while nodes
at level 2 will listen; during interval [10..20) level 2 nodes transmit while level
1 nodes listen; and finally during [20..30), level 1 nodes transmit and the sink
(level 0) listens. Thus, the answer will be ready prior the completion of time
instance 31 which is the end of the epoch.

The parent wake-up window 7 is clearly an over-estimation (in the above ex-
ample 10 seconds!) of the actual time that is required to transmit between the
children and a parent. The rationale behind this over-estimation is to offset the
limitations in the quality of the clock synchronization algorithms [34] but in
reality it is too coarse. In the experimental Section 7, we found that this over-
estimation is three orders of magnitudes larger than necessary. Additionally,
it is not clear how 7 is set under a wvariable workload which occurs under the
following circumstances: i) from a non-balanced topology, where some nodes
have many children and thus require more time to collect the results from
their dependents; and ii) from multi-tuple answers, which are generated be-
cause some nodes return more tuples than other nodes (e.g., because of the
query predicate).

Cougar: In this approach, each sensor maintains a child waiting list that
specifies the children for each node. Such a list can be constructed by having
each child explicitly acknowledging its parent during the query dissemination

14

phase. Having the list of children enables a sensor to power down its transceiver
as soon as all children have answered. This yields a set of non-uniform waking
windows {7y, 7, ...} as opposed to TAG where we have a single 7 which is
uniform for all sensors (i.e., |e/d]). The main drawback of Cougar is that
a parent node has to keep its transceiver active from the beginning of the
epoch until all children have answered. In particular, it holds that 7; > 7; if
depth(v;) < depth(v;). In order to cope with children sensors that may not
respond, Cougar deploys a timeout h. To understand the drawback of Cougar
consider Figure 4 (top, right), where level 2 and level 1 nodes have activated
their transceivers at time instance zero and wait for the leaf nodes to respond.
If a failure at some arbitrary node x occurs (e.g., at level 3) then each node on
the path x — ... — s has to keep its radio active for h additional seconds.

A recent paper that proposes a scheduling algorithm for wireless sensor net-
works has been presented in [3]. The authors define a probabilistic model
that allows the evaluation of the packet loss probability that results from
the reduced radio activity. Based on the probabilistic model, the algorithm
chooses the radio activity intervals that achieve optimal probability of success-
ful packet delivery using three different strategies. The key differences between
MicroPulse™ and this approach are a) the proposed approach assumes that
only one channel can be active at a given time whereas in our case all sensors
that participate in a continuous query are active, and b) the scheduling of
the wake-up times is based on a probabilistic model whereas in our model the
scheduling is based on profiling recent activity and determining the workload
of each sensor. While this approach might be beneficial in cases of snapshot
queries our approach is focused on continuous queries.

In the following three subsections (4.2-4.4), we will detail the operation of the
WART algorithms we propose in this paper. In particular, we will describe
the construction phase, the dissemination phase and the adaptation phase.

4.2 WART Phase 1: Construction

The first phase of the WART algorithm starts out by having each node select
one node as its parent. This results in a waiting list similar to Cougar [59]. To
accomplish this task, the parent is notified through an explicit acknowledg-
ment or becomes aware of the child’s decision by snooping the radio.

In the next step, each sensor profiles the activity of the incoming and outgo-
ing links and propagates this information towards the sink. In particular, each
sensor s; executes one round of data acquisition by maintaining one counter for
its parent connection (denoted as s¢**) and one counter per child connection

(denoted as sﬁ’;), where j denotes the identifier of the child. These counters

15

measure the workload between the respective sensors (as the required time
to propagate the query results between the respective pairs) and will be uti-
lized to identify the critical path cost in the subsequent epochs. Note that
these counters account for more time than what is required had we assumed a
collision-free MAC channel. Additionally, it is important to mention that we
could have deployed a more complex structure rather than the counters s
and s, that would allow a sensor to obtain a better statistical indicator of
the link activity, but these ideas are outside the scope of this paper. By pro-
jecting the time costs obtained for each edge to a virtual spanning tree creates

a distributed Query Routing Tree similar to the one depicted in Figure 2.
The final step is to percolate these local edge costs to the sink by recursively
executing the following in-network function f at each sensor s;:

0 if s; is a leaf,
f(si) = {

MaTyjechildren(s;) (f(55) + Sﬁ’;) otherwise.

The critical path cost is then f(sg) (denoted for brevity as ¢/). Using our work-
ing example of Figure 2, we will end up with the following values : f(s5<i<9) =

0, f(sa) =4, f(s3) =29, f(s2) =11, f(s1) =59 and ¢ = f(s9) = 99.
4.8 WART Phase 2: Dissemination

In this phase each sensor s; (i < n) locally defines three parameters using
the critical path cost 1;. These parameters enable s; to derive: i) the time
instance during which it should wake up (i.e., w;), ii) the interval during
which it should listen for readings and to transmit results (i.e., 7;), and iii) the
workload increase tolerance of the parent of s; (i.e., ;) which signifies when
the synchrony of the query routing tree might be disrupted.

Algorithm 1 presents the main steps of this procedure which propagates 1;
top-down, from the sink to the leaf sensors, with a message complexity of
O(n). The first step aborts the case where the critical path is larger than the
epoch (which signifies an error in the user query). The second step calculates
the wake up time instance w;, such that s; has enough time to collect the
tuples from all its children s; (Vj € children(s;)). In practice, this is defined
by the child of s; with the largest workload (i.e., s/ ,,piq)- The second step
also defines the waking window of 7;, which is the complete window during
which s; will enable its transceiver. In the third step, the children of s; are
notified with the adjusted critical path cost (i.e., ¥ — s?“t). Concurrently with
step three, s; also notifies its children s; with the workload increase tolerance
of s; (i.e., ;) and a flag which signifies whether these nodes belong to the

16

Algorithm 1 : WART Dissemination Phase

Input: n sensing devices {sy, S, ...,s,} and the sink sq, the Critical Path

cost v, the epoch e.

Output: A set of n waking windows 7; (i < n), wake-up time instances w;

(1 < n) and workload increase tolerance thresholds A; (i < n)

Execute these steps beginning from s, (top-down) and assuming

that ¢y = :

(1) If ¥; > e then abort “The Critical Path is larger than the Epoch”.

(2) For each child s; of s; (Vs; € children(s;)), find the maximum s%. The
child with the maximum s;"; is denoted as ;") ;. cpiq- The wake time w;

is calculated as follows:

w; = 1/}2 - Sz,rznamchild —a—b— ¢, (1)
where a, b and ¢ are three variables which offset the costs of processing,
the inaccurate clock and collisions at the MAC layer, respectively.

The waking window of s; is the interval:
T = [wl<wl + SZ:,T;naa:child + S?Ut» (2)

(3) Disseminate the following information to each s;’s child s; (Vj €
children(s;)):
(a) The value ;.
Upon receiving v;, each s; computes its own 1, as follows:

by = i —)" (3)

(b) The value s

i,mazchild*

Upon receiving s;"),,.chig, €ach s; utilizes this value to define the

workload increase tolerance (\;) of s; as perceived by s;, as follows:

)\j = Siznaa:child - S§Ut (4)

(4) Repeat steps 2-5, recursively until all sensors in the network have set w;,
7; and \; respectively (i < n).

critical path. Thus, s; can intelligently schedule its transmissions in cases of
local workload deviations.

To facilitate our presentation we will now simulate the execution of Algorithm
1 on the example of Figure 2. To simplify the discussion, assume that the costs
a, b and ¢ (which account for processing, the inaccurate clock and the collisions
at the MAC layer) are all equal to zero. Additionally, assume that the critical
path cost is small enough to fit within the epoch (i.e.,) << e). In particular,
with 1 = 99 we get the following quadruples (s;, w;, 7;, A;) at each sensor:

17

{ (0,59, [59..99),0), (s1,29, [29..99),0), (50,46, [35..59), 17), (s3, 29, [0..59), 0),
(54,37, [33..63),8), (s5,35,[35..46),0), (s6,39,[39..46),4), (s1,27,[27..29),27),
(s5,0,[0..29), 0), (se, 33, [33..37),0) }

To understand the benefits of the workload increase tolerance parameter \;,
consider the scenario where node s; increases its workload by 15 time in-
stances. Since \; = 29 — 2 = 27, s; knows that the transceiver of its parent
sz is enabled for 27 additional time instances, thus s; can start delivering the
workload earlier (i.e., w; = 12 instead of w; = 27) succeeding in completing
the transmission on-time.

4.4 WART Phase 3: Adaptation

In this section we describe an efficient distributed algorithm for adapting the
WART query routing tree in cases of workload changes.

First notice that the naive approach to cope with workload changes is to
re-construct the WART tree in every epoch. The message cost of such an
approach is analyzed as follows: the WART construction phase has a message
complexity of O(1) as it can be executed in parallel with the acquisition of data
tuples from sensors (i.e., the critical path cost can be piggybacked with data
tuples). The dissemination phase on the other hand, has a message complexity
of O(n) as it requires the dissemination of the critical path cost to all n nodes
in the network. The algorithm we propose in this section can circumvent the
O(n) cost incurred by the dissemination phase in every epoch by deploying a
set of rules we describe in the next algorithm.

Algorithm 2, presents the WART adaptation algorithm which proceeds in
three steps. The first step of the algorithm (lines 2-11) calculates the workload
indicators of the current epoch (i.e., workload;) and the previous epoch (i.e.,
workload;). If the workload has changed by more than a user defined user
threshold ¢ in line 9, we consider this change as significant and proceed with
the adaptation of the routing tree in line 12. Otherwise, we disregard this
deviation and abort the algorithm. Assuming a significant deviation, step 2
in line 12 handles the case where the change occurs on the critical path. In
such a case, s; has to request the re-construction of the routing tree using
the construction and dissemination phases. For instance, if the workload of s3
changes from 30 time instances to 35 time instances (see Figure 2) then this will
trigger the re-construction of the WART routing tree and this change should
be propagated to all nodes in the network. Although this case is possible, our
experimental study in section 7 has shown that it is not frequent.

Finally, step 3 of Algorithm 2 (lines 17-26) handles the more common case
where the change does not occur on the critical path. In such a case, if the

18

Algorithm 2 : WART adaptation phase
Input: A sensor s;, the critical path value v);, the wake-up time w;, the waking
window 7;, a flag which indicates if s; lies on the critical path, an error threshold §.
Output: An updated set of w;, 7; and \; values.

1: procedure Adapt(s;)
2: > Step 1: Calculate Workload Indicators
3 workload], = ¥; — wy; > Workload of previous epoch
4: for j =1 to children(s;) do
5: add(tuples(s;), workload,); > Build new workload
6: end for
7 add(tuples(s;), workload;); > Append local tuples
8 z = |workload; — workload}| > Workload Deviation
9: if (z < 0) then
10: signal(finished); > Negligible Workload Change
11: end if

12: > Step 2: Important Workload Change on the CP
13: if (¢p;) then

14: send(”Critical Path Re-construction”, s;);
15: signal(finished);
16: end if

17: > Step 3: Important Work Change NOT on the CP
18: if (workload; decreased by z) then

19: w; = w; + x; > Adjust local wakeup time

20: elser> Workload was Increased by x

21: if (z <)) then > x is less than the available slack
22: w; = w; — x; > Adjust local wakeup time

23: else

24: send(”Request Critical Path Re-construction”, s;);

25: end if

26: end if

27: signal(finished);
28: end procedure

workload is decreased by = (line 18) then a sensor locally delays its wake up
variable by x (i.e., to w; + x). For instance, if the workload of sy drops from
13 to 11 (thus, z = 2), then wi*’ = wqy + x = 46 + 2 = 48. Similarly if the
workload is increased by x (line 20) then there are two cases: i) the increase
is less or equal to the slack \; and ii) the increase is greater than the slack \;.
For the first case (i) consider a workload increase at sy from 13 to 18 (thus,
x = 5 that is smaller than Ay = 17). This yields the following adaptation of
the wake up time wi*’ = w; —x = 46 — 5 = 41. For the second case (ii)
consider a workload increase at sy from 13 to 32 (thus, x = 19 that is larger
than Ay = 17). This yields the re-construction of the tree as such an increase
might potentially create a new critical path.

19

5 Energy-driven Tree Construction (ETC) Algorithm

Even though the proposed WART algorithm can efficiently solve the waking
window problem it does not optimize the query routing tree and that leads
to increased collisions during data transmission. In this section we describe
the second algorithm of the MicroPulset framework coined ETC. Assuming
an arbitrary query routing tree Tj,,,; constructed using the FHF approach,
the objective of ETC is to transform 7j,,,; into a near-balanced tree Tgy¢c in
a distributed manner. We start out with some definitions on balanced trees
and then present the ETC algorithm both in a centralized setup and a dis-
tributed setup. Notice that the ETC algorithm logically precedes the operation
of the WART algorithm but we choose to present them in opposite order as
the WART algorithm determines the most significant energy savings in our
framework.

5.1 Preliminaries and Background

In this section we will provide an overview of balanced trees in order to better
frame the problem the ETC algorithm seeks to solve. As we have already
mentioned in the motivation of this work, balanced trees have the following
desirable properties: i) they decrease collisions during data transmission, and
ii) they decrease query response times and iii) they increase system lifetime and
coverage. Balanced trees can improve the asymptotic complexity of insert,
delete and lookup operations in trees from O(n) time to O(logyn) time,
where b is the branching factor of the tree and n the size of the tree. We shall
next provide some formal definitions to be utilized in our description:

Definition 1 - Balanced Tree (Tpuanced): A tree where the heights of the
children of each internal node differ at most by one.

The above definition specifies that no leaf is much farther away from the root
than any other leaf node. For ease of exposition consider the following directed
tree: Ty = (V, E) = ({A,B,C, D}, {(B,A),(C,A), (D, B)}), where the pairs in
the E set represent the edges of the binary tree. By visualizing T}, we observe
that the subtrees of A differ by at most one (i.e., |height(B) — height(C')|=0)
and that the subtrees of B differ again by at most one (i.e., |height(D) —
height(NULL)|=1). Thus, we can characterize T} as a balanced tree.

Notice that V' has several balanced tree representations of the same height
(e.g., the directed tree T, = ({A, B,C, D}, {(B,A),(C,A),(D,C)})). Simi-
larly, V' has also many balanced tree representations of different heights (e.g.,

the directed tree T3 =({A, B,C,D}, {(B,A),(C,A),(D,A)}) which has a

20

height of one rather than two). Finally, in a balanced tree every node has
approximately [children, where 8 is equal to /n (the depth of every bal-
anced tree is d = loggn, thus B¢ =mn and 8 = ¢/n). The ETC algorithm
presented in this section focuses on the subset of balanced trees which have
the same height to T}, as this makes the construction process more efficient.

In order to derive a balanced tree (Tpaanced) in a centralized manner we could
utilize the respective balancing algorithms of AVL Trees, B-Trees and Red-
Black Trees. However, that would assume that all nodes are within communi-
cation range from each other which is not realistic. Thus, the ETC algorithm
seeks to construct a Near-Balanced Tree (Thear batanced), defined as follows:

Definition 2 - Near-Balanced Tree (7Tcar_batanced): A tree in which every
internal node attempts to obtain a less or equal number of children to the
optimal branching factor (3.

The objective of T},car_patanced 18 t0 yield a structure similar to Tyeianceq Without
imposing an impossible network structure (i.e., nodes will never be enforced
to connect to other nodes that are not within their communication range). We
shall later also define an error metric for measuring the discrepancy between
the yielded T}car_patanced and the optimal Tyuanced. We will additionally show
in Section 7.3.1 that constructing T},cqr patanced With the ETC algorithm yields
an error of 11% on average for the topologies utilized in this paper.

5.2 The Centralized ETC (CETC) Algorithm

Let us first devise an algorithm for constructing a near-balanced query routing
tree in a centralized manner. In particular, we will devise the Centralized ETC
(CETC) algorithm, which obtains global knowledge before proceeding into the
generation of the near-balanced tree (the tree will be denoted for clarity as
Terrc). We show that such a centralized solution poses an extremely high
complexity rendering it inefficient for wireless sensor networks. This necessi-
tates the use of a lower complexity distributed approach. For this, we devise in
the next section the distributed ETC algorithm that constructs a structurally
similar tree to Togre in a distributed manner.

The CETC algorithm consists of three steps:

(1) A sink (sg) node executes an in-network query in order to acquire the
initial input tree Tj,,, and the alternative parent list of each sensor.
The alternative parent list will be useful in defining a set of parent re-
assignments that can lead to Togre.

(2) The sink sy conducts an exhaustive search of all possible Topre trees

21

and estimates their balancing error w.r.t. to the optimal Thuanceq tree.
It finally chooses the one with the least cost using the Balancing_Error
formula presented in 7.3.1.

(3) The sink sq disseminates the identified tree back to the n nodes so that
these can make the required adjustments.

It is easy to see that the first step of the CETC algorithm has a message
complexity of O(n) (i.e., each node will transmit exactly one message) but
each message has a size of O(n?) (i.e., in a fully connected graph each node
will have n-1 alternate parents). The second step is conducted on the sink node
and requires in the worst case to explore the complete solution space which
has a size of O(n?!). Note that the CETC algorithm is a computationally
intensive algorithm and therefore the second step of the algorithm might end
up delivering a solution which does not match the initial acquired state of
the network that was acquired in step 1 (as the network state might have
changed). Finally, the algorithm needs to propagate the solution back to the
n nodes and that has again a message complexity of O(n) with each message
being O(n?).

5.8 The Distributed ETC Algorithm

The ETC algorithm presented in this section overcomes the problems of the
Centralized ETC algorithm by conducting the calculation of the optimized
routing tree in a distributed manner. In particular, given an arbitrary query
routing tree T}, the objective of ETC is to transform 75, into a near-
balanced tree Tgrre in a distributed manner. The ETC algorithm consists of
a discovery and distributed balancing step which are described next.

5.3.1 FETC Phase 1: Discovery

The first phase of the ETC algorithm starts out by having each node select
one node as its parent using the FHF approach. During this phase, each node
also records its local depth (i.e., depth(s;)) from the sink. Notice that depth(s;)
can be determined based on a hops parameter that is included inside the tree
construction request message. In particular, the hops parameter is initialized
to zero and is incremented each time the tree construction request is forwarded
to the children nodes of some node. A node s; also maintains a child node list
children and an alternate parent list APL according to the description we
provided in Section 2.

The sink then queries the network for the total number of sensors n and the
maximum depth of the routing tree d. Such a query can be completed with

22

a message complexity of O(n). When variables n and d are received, the sink
calculates, similar to the CETC algorithm, the Optimal Branching Factor (/).

5.3.2 FETC Phase 2: Balancing

The second phase of the ETC algorithm involves the top-down reorganization
of the query routing tree Tj,,,: such that this tree becomes near-balanced. In
particular, the sink disseminates the g value to the n nodes using the reverse
acquisition tree. When a node s; receives the 8 value from its parent s, it
initiates the execution of the CETC algorithm in which s; will order parent
re-assignments for its children. The presented algorithm is divided into two
main steps: i) lines 3-8: s;’s connection to its newly assigned parent newParent;
and ii) lines 9-25: the transmission of parent reassignment messages to children
nodes, in which the given nodes are instructed to change their parent.

In line 2 of the CETC algorithm each node s; (Vs; € S — s¢) waits in blocking
mode until an incoming message interrupts the receive() command. When
such a message has arrived, s; obtains the § value and the identifier of its
newParent. The next objective (line 4) is to identify whether newParent is
equal to NULL, in which case s; does not need to change its own parent
(i.e., we proceed to line 9). On the contrary, if newParent has a specific node
identifier then s; will attempt to connect to that given node (lines 4-8). Notice
that if newParent cannot accommodate the connect request from s; then the
procedure has to be repeated until completion or until the alternative parents
are exhausted.

In line 9 we proceed to the second step of the algorithm in which s;’s children
might be instructed to change their parent node. We choose to do such a
reassignment at s;, rather than at the individual child s;, because s; can more
efficiently eliminate duplicate parent assignments (i.e., two arbitrary children
of s; will both not choose newParent). In line 10 we skip s; if the number of
children is less than (. In the contrary case (line 14), we have to eliminate
|children(s;)| — (B children from s;. Thus, we iterate through the child list of
s; (line 16) and attempt to identify a child s; that has at least one alternate
parent (line 17). If an alternative parent can not be determined for node s;
then it is obviously not meaningful to request a change of s;’s parent (line 22).

Let us now simulate the execution of the ETC algorithm using the illustra-
tion of Figure 3. In particular, Figure 3 (left) displays n = 10 sensors ar-
ranged in an ad-hoc topology Ty With a depth d = 2. In order to transform
Tinput into a near-balanced topology each node has to obtain approximately
3 = 3.16 children (i.e., v/10). To simplify our discussion, but w.l.o.g., let us
assume that the only sensors with multiple entries in their alternate parent
list (APL) are sg and sj9. In particular, assume that we have the following

23

Algorithm 3 : ETC balancing algorithm
Input: A node s;; The children-list of s; (denoted as children(s;)); The alternate
parent list for each child of s; (denoted as APL(sj), where s; € children(s;));
The Optimal Branching Factor ; The new parent s; should select (denoted as
newparent(s;)).

Output: A Near-Balanced Query Routing Tree Togre.

Execute these steps beginning at sy (top-down):

1: procedure Balance-Tree(s;; children(si); vs;echildren(s)) APL(85);)

2: (8, newParent)=receive(); > Acquire info from s;’s parent.
3: > Step 1: Connect to new parent if needed

4: while (newParent != NULL) do

5: if (lconnect(newParent)) then > Cannot become a child of newParent.
6: newParent = getNewParent(parent(s;)) > Involves 1 round-trip.

Parent returns NULL if no new Parent is available (in which
case s; stays with its current parent).
T end if
8: end while
9

> Step 2: Adjust the parent of the children nodes.

10: if (|children(s;)| <= /) then > Skip s; as no change is necessary.
11: for j =1 to |children(s;)| do

12: send(3, NULL, s;); > Send 8 and no newParent to child.
13: end for

14: else> Ask |children(s;)| — 8 nodes to change their parent.

15: while (|children(s;)| > /) do

16: s; = getNext(children(s;));

17: if (|JAPL(s;)| > 1) then

18: newParent=AlternParent(APL(s;), s;);

19: send(83, newParent, s;); > Send to s;.
20: children(s;) = children(s;) - s; > Remove from children.
21: else

22: send(8, NULL, s;); > Report No change.
23: end if

24: end while

25: end if

26: end procedure

values: APL(sg)={s3} and APL(s10)={s3}.

The ETC algorithm is initiated at the sink node sy. Since sy has less than
£ = 3.16 children it transmits [and newParent=NULL to its only child s;.
Similarly, s; transmits $ and newParent=NULL to its children s5, s3 and sy.
Let us now consider s, which receives the above parameters in line 2 of Algo-
rithm 4. Since newParent =NULL, s, does not need to change its parent (lines
3-8). It has to however instruct some of its children to change their parents as
|children(ssy) | >3. Thus, it processes its children nodes in sequential order,
starting at s; and ending at s, instructing some of them to change their par-

24

ent. In particular, s5_g are instructed to retain their initial parent while sg and
s10 are instructed to change their parent to s (i.e., they receive the messages
send (3.16, s3, sg) and send(3.16, s3, s19) respectively. In our example s3 can
accommodate sg’s and s1g’s request as |children (s3)|=0. Under different
conditions however, satisfying such requests might not be possible. Thus, each
node might request from its parent another alternative parent (i.e., lines 5-7).
The updated near-balanced tree Trrc is presented in Figure 3 (right).

6 Experimental Evaluation Methodology

In this section we describe our experimental methodology which involves both
a set of real micro-benchmarks on the CC2420 radio chip [52], utilized on MI-
CAz, TelosB and IMote2 sensing devices, and a set of trace-driven simulations
with real datasets from Intel Research Berkeley and UC-Berkeley. The experi-
mental evaluation described in this section focuses on three parameters: i) the
Energy Construction Cost, for creating the WART and ETC structures
proposed in this paper, ii) the Energy Maintenance Cost, for maintaining
the two structures between consecutive epochs and iii) the Balancing Error,
for the construction of the near-balanced tree with the ETC algorithm. We
shall next describe the sensing device used in the experiments, the respective
datasets and query workloads.

6.1 Sensing Device

We use the energy model of Crossbow’s TelosB [11,42] research sensor device
to validate our ideas (see Figure 5 (left)). TelosB is an ultra-low power wireless
sensor equipped with an 8 MHz MSP430 core, 1MB of external flash storage,
and a 250kbps Chipcon (now Texas Instruments) CC2420 RF Transceiver that
consumes 23mA in receive mode (Rx), 19.5mA in transmit mode (Tx), 7.8mA
in active mode (MCU active) with the radio off and 5.1 A in sleep mode. Our
performance measure is Energy, in Joules, that is required at each discrete
time instance to resolve the query. We utilize a failure rate of 20% in our
trace-driven experiments in order to simulate failures. In particular, a sensor
has a probability of 0.2 to not participate in a given epoch.

6.2 FExperimental Testbed

We have implemented MicroPulse™ in nesC[16], the programming language of
TinyOS[23]. TinyOS is an open-source operating system designed for wireless

25

embedded sensor nodes. It was initially developed at UC-Berkeley and has
been deployed successfully on a wide range of sensor devices (e.g., Mica, Te-
los, IMote2, RISE[5] mote, etc.). TinyOS uses a component-based architecture
that enables programmers to wire together in on-demand basis the minimum
required components. This minimizes the final code size and energy consump-
tion as sensor nodes are extremely power and memory limited. nesC [16] is
the programming language of TinyOS and it realizes its structuring concepts
and its execution model.

To compare our MicroPulse™ framework with TAG and Cougar, we have im-
plemented stripped-down editions of these protocols according to the descrip-
tion provided in Section 4.1. We did not choose to use the TAG implementation
(integrated within TinyDB) as there was no practical way to separate its im-
plementation from the rest system due to low-level implementation details.
Additionally, Cougar never emerged to an open source implementation stack.

We utilize the TOSSIM [31] environment to conduct realistic simulations of
our code when required. TOSSIM [31] provides a scalable, high fidelity simula-
tion environment of TinyOS sensor networks. It simulates the TinyOS network
stack, allowing experimentation with low-level protocols in addition to top-
level application systems. In order to conduct fine-grained power modeling
in TOSSIM, we use PowerTOSSIM [47], a popular power modeling extension
to TOSSIM. As TelosB is not part of the PowerTOSSIM module, we had
to extend PowerTOSSIM by incorporating a new energy model for TelosB.
PowerTOSSIM has been shown [47,64], to be more than 90% accurate. In
particular, the authors in [47] measure the energy for executing the demon-
stration examples bundled with TinyOS both using PowerTossim and on real
sensors (measured with a multi-meter). The authors show that this yielded an
average error of only 4.7%. Similar observations also apply for more complex
applications like TinyDB and Surge that were shown to have an error of 9.5%
on average.

In addition to our base implementation, we have also implemented a graphical
user interface that allows us to visualize the connectivity of query routing trees
by displaying sensor nodes in circles and the connections to their parents
using straight lines. Our simulation experiments were performed on a Lenovo
Thinkpad T61p PC with an Intel Core 2 Duo CPU running at 2.4GHz and
2.0 GB of RAM.

6.3 Datasets

We utilize the following three realistic datasets in our trace-driven experiments
in order simulate regular-scale, medium-scale and large-scale wireless sensor

26

Intel54 Dataset - Mote Locations
35 T T T

éuery R‘Outing "I'ree weene
30 |24 5 KO RERORE gy R0 RO VINWL I
RN . 4o]

“i7 g _3@3____..)@5___)@7773@9 N E
sl “]
o\

A L
£ 20 o 2 >? s]
#9 6 v
10k ,,""‘__,,gs A8 i
7 X s e
L e 3 »#0 LR B
: 3 ®- 581
SINKAS [P

Fig. 5. Left: Crossbow’s TelosB Mote (TPR2420). Our micro-benchmarks and
trace-driven experiments utilize the energy model of the TelosB sensor device and
the CC2420 radio transceiver. Right: The location of the 54 sensors in the Intel54
dataset and an ad-hoc query tree constructed using the FHF approach.

networks.

i. Intel Research Berkeley (Intel54): This is a real dataset that is col-
lected from 58 sensors deployed at the premises of the Intel Research
in Berkeley [25] between February 28th and April 5th, 2004. The sen-
sors utilized in the deployment were equipped with weather boards and
collected time-stamped topology information along with humidity, tem-
perature, light and voltage values once every 31 seconds (i.e., the epoch).
The dataset includes 2.3 million readings collected from these sensors.
We use readings from the 54 sensors that had the largest amount of local
readings since some of them had many missing values. More specifically,
we utilize the real coordinates of the 54 sensors (see Figure 5 (right)).
The depth of the initial query routing tree constructed with the FHF
approach is 14.

ii. Great Duck Island (GDI140): This is a medium-scale realistic dataset
from the habitat monitoring project deployed in 2002 on the Great Duck
Island which is 15km off the coast of Maine [51], USA. We utilize readings
from the 14 sensors that had the largest amount of local readings in order
to synthetically derive a sensor network composed of 140 nodes that fol-
lows the same distribution with the initial dataset. The GDI140 dataset
includes readings such as: light, temperature, thermopile, thermistor, hu-
midity and voltage. The average depth of the initial query routing tree
constructed with the FHF approach is 24.

iii. Intel Research Berkeley (Intel540): In order to evaluate our approach
on a large-scale sensor network we synthetically derive a 540-node net-
work based on the Intel54 dataset. The distribution of the dataset follows
again the same distribution with the Intel54 dataset. The average depth
of the initial query routing tree constructed with the FHF approach is
22.

27

The need of efficient query routing trees originates from the fact that many ap-
plications require the acquisition of data from large-scale environments (e.g.,
Wireless Sensor Networks, VANETS, People-centric Sensing, etc.) On the other
hand, small-scale networks will possibly not require any specialized commu-
nication structures as these nodes might be only a few hops away from the
sink. Consequently, we focus our experimental evaluation on these larger-scale
network (i.e., 54 nodes, 140 nodes and 540 nodes).

6.4 Query Sets

We utilize three representative queries from two predominant classes of queries
in wireless sensor networks.

The first class of such queries is aggregate selection queries [59,34] (i.e., SELECT
agg() FROM sensors). Roughly, these queries can be distinguished in: i) dis-
tributive aggregates, where records can be aggregated in-network without com-
promising correctness (e.g., Max, Min, Sum, Count) and ii) holistic aggre-
gates, where in-network aggregation might compromise the result correctness
(e.g., Median), thus all tuples have to be transmitted to the sink before the
query can be executed. The separation between the above cases is important
as each individual case defines a different workload per edge (i.e., distributive
aggregates have a fized workload of one tuple per edge while holistic aggregates
a variable workload).

The second class of representative queries is non-aggregate selection queries
(e.g., SELECT moteid FROM sensors). Assuming a static topology such queries
generate a fived workload per edge, unless we apply a predicate on the query
(e.g., temperature > X) and generate in this manner a variable workload per
edge.

In our experiments we utilize the following query-sets which encapsulate all
the above cases:

e Single-Tuple queries (ST): where a sensor transmits exactly one tuple per
epoch. Distributive aggregates belong to this category. We utilize the fol-
lowing representative query in our study:

SELECT moteid, temperature

FROM sensors

WHERE temperature=MAX(temperature)
EPOCH DURATION 31 seconds

o Multi-Tuple queries with Fized size (MTF): where a sensor transmits a set
on f tuples per epoch, where f is a constant. Holistic aggregates and non-
aggregate selection queries with a fixed workload belong to this category.

28

We utilize the following representative query in our study:

SELECT moteid, temperature
FROM sensors
EPOCH DURATION 31 seconds

o Multi-Tuple results with Arbitrary size (MTA): where a sensor transmits a
set of f’ tuples per epoch, where f’ is a variable that might change across
different epochs. Non-aggregate selection queries with a variable workload
belong to this category. We utilize the following representative query in our
study:

SELECT moteid, temperature
FROM sensors

WHERE temperature>39
EPOCH DURATION 31 seconds

Each query features an epoch duration which specifies the amount of time that
sensors have to wait before re-computing the continuous query. Additionally,
for the Cougar and WART algorithms, we set the child waiting timer h to
200ms. If the timer for a sensor s; runs out then s; will not wait for any more
results from its children. Such a timer is deployed to avoid situations where
nodes have to wait for children nodes for an unspecified amount of time.

6.5 Communication Protocol

Our communication protocol is based on the ubiquitous for sensor networks
IEEE standard 802.15.4 (the basis for the ZigBee [66] specification used by
most sensor devices including the TelosB sensor device). ZigBee uses the
CSMA/CA collision avoidance scheme where a node employs a random ex-
ponential back-off algorithm that backs-off for a random interval of 0.25-0.5s
before retransmission. Although collisions might be handled at a certain de-
gree by the MAC layer [56], this scheme is agnostic of the data semantics
exhibited at the higher levels of the communication stack. In this paper we
exploit these higher level semantics in order to yield better collision handling.

Our data frames are structured as following [31]: Each message is associated
with a 5 Byte TinyOS header [30]. This is augmented with an additional 6B
application layer header that includes: (i) the sensor identifier (1B), (ii) the
message size (4B) and the depth of a cell from the querying node (1B). In each
message we allocate 2B for environmental readings (e.g., temperature, humid-
ity, etc.), 4B for aggregate values (max, min and sum) and 8B for timestamps.
ZigBee’'s MAC layer dictates a maximum data payload of 104 bytes thus we
segment our data packets whenever this is required.

29

7 Experimental Evaluation Results

In order to assess the efficiency of the algorithms presented in this paper we
have conducted four experimental series. In the first series we have conducted
two micro-benchmarks on the CC2420 radio transceiver in order to quantify
the transmission and reception inefficiencies in a real setting. In the second
series we have compared the energy consumption of the WART algorithm to
the respective algorithms deployed in the Cougar and TAG frameworks under
a variety of query workloads and topologies. In the third series we have studied
the balancing error and the energy consumption of the ETC algorithm and in
the fourth series we have evaluated the efficiency of the overall MicroPulse™
framework focusing on energy consumption and system lifetime.

7.1 Experimental Series 1: Micro-benchmarks

In the first experimental series we have conduct two micro-benchmarks on
the CC2420 radio chip [52] (both attached to the TelosB [11] sensor and in
TOSSIM [31]) to justify why data reception and data transmission inefficien-
cies have to be optimized in current data acquisition systems. For the first type
of inefficiency we show why a sensing device should not change the state of
its transceiver more than once during the interval of an epoch. That supports
our argument that query results have to be communicated between sensors at
a specific time instance rather than at several time instances. For the second
type of inefficiency we justify why a sensor network should minimize the num-
ber of hub nodes (i.e., nodes with several children) as these increase collisions
during data transmission and thus also increase energy consumption.

In the first micro-benchmark we transfer 1000 16-byte packets from a TelosB
sensing device A to another TelosB sensing device B and measure the energy
consumption of sensor A when this transfer is conducted in 1, 10, 100 and
1000 rounds respectively. In particular, we configure sensor B with an always-
on transceiver and sensor A with a transceiver that changes its state from
on (STXON/SRXON) to off (SRFOFF), 1 to 1000 times respectively. In order to
measure the energy consumed by sensor A for the above function we utilized
a multi-meter, to measure the circuit current, and we also measured the wall
clock time until the given operations completed successfully.

Figure 6 (left) shows the result of the first micro-benchmark. We observe that
by changing the transceiver status 1000 times consumes 195u.J while conduct-
ing the same operation one time requires only 128u.J. Although in both cases
we transfer precisely the same amount of data, in the former case we spent
65% more energy. This increase occurs even though the CC2420 transceiver

30

200

Evaluation of the receiver module (CC2420)

57%

Loss Rate for all topologies

T /
190 /- 56%)/*/:r
55%
180 /
54%
= 170 2 f/"\,/
3 5 53%)/
>
g 160 8 52%
2 S Pl
w150 51% /
140 / 50% /
49%
130 4_/_% A S
48% L L !
120 L L L L 10 15 20 25 30
1 10 100 1000

Topology (Net)
Receiver status change frequency

Fig. 6. Micro-benchmarks using the CC2420 communication module. Left: Chang-

ing the transceiver status from on to off many times significantly increases energy

consumption. Right: Increasing the number of children per node z also increases

collisions during data transmission to node x.

has very quick start-up times compared to other transceivers. Notice that dur-
ing the startup of the RF module a voltage regulator and crystal oscillator
have to be started as well and become stable [52]. Thus, it is quite inefficient
to change the transceiver state (from on to off and vice-versa) more than once
during the interval of an epoch. The WART algorithm presented in this paper
assigns a specific time interval to each child node during which query results
have to be transmitted to a parent node, thus the transceiver is enabled only
once.

In the second micro-benchmark we justify why a sensor network should min-
imize the number of hub nodes (i.e., nodes with a large in-degree). For this
purpose we construct 20 star topologies Net; (10 > ¢ > 30) with each of
which features ¢ children nodes, and evaluate the loss rate when all children
nodes attempt to transmit data packets to a given sink node. In particular,
each node attempts to transmit a 16-byte packet to a given sink node for
60 seconds (that accounts to approximately 250 messages in our setting). We
utilized the TOSSIM environment along with its LossyBuilder module that
created “lossy” radio models for each topology. The lossy model we've created
(for each of the topologies) places the sensors at various distances from the
sink node and generates a Gaussian packet loss probability distribution for
each distance. TOSSIM then generates packet loss rates for each sensor-sink
pair by sampling these distributions and translates this into independent bit
error rates.

For each topology Net; (10 > i > 30) we measure: i) the Total Packets Sent
from all sensors to sy (denoted as PT) and ii) the Total Packets Received from
so (denoted as P?). We next evaluate each topology’s loss rate by using the
formula:

31

PO
LossRate(Net;) =1 — (PZT) (5)

Figure 6 (right) illustrates the loss rate for the 20 presented topologies. We
can observe an almost linear increase in the loss rate for topologies with more
than 10 children nodes. For a setup of 30 children nodes we observe a loss
rate of over 56%. We tried to scale the experiments to 100 children nodes
and observed that the loss rate peaked at 77%. But even for smaller-scale
cases, many data packets do not reach their designated destination in the
first attempt and need to be re-transmitted (the energy cost of this deficiency
will be documented in the subsequent experiments). It should be noted these
findings are highly correlated with the lossy model generated by the TOSSIM’s
LossyBuilder component. More pessimistic lossy models would have generated
even higher loss rates. However, investigating the results of our experiments
indicates that nodes closer to the sink node manage to transmit more messages
successfully and that is why the loss rates may appear somewhat optimistic.
The MicroPulse™ algorithm presented in this paper distributes the children
of overloaded nodes to neighboring nodes and assigns different wake-up times
decreasing in that way data transmission collisions and energy consumption.

7.2 Experimental Series 2: Fvaluation of the WART algorithm

In the second experimental series we assess the efficiency of the WART algo-
rithm in isolation from the ETC algorithm, presented in Section 7.3, in order
to highlight the distinct properties of WART (in Section 7.4 we shall also
present them in conjunction). Additionally, we will measure the energy of the
radio transceiver independently from the rest of the components (flash, data
acquisition board, etc.) in order to more accurately capture the differences
between the presented algorithms.

7.2.1 FEnergy Consumption of WART

We study the energy consumption of the WART, Cougar and TAG algorithms
for the different combinations of query sets (ST, MTF and MTA) to datasets
(Intel54, GDI140 and Intel540) as these were described in Section 6.

Energy Consumption for Single-Tuple Answers: Figure 7 (top-left)
shows the energy consumption for the Intel54 dataset using the single-tuple
query ST. We observe that TAG requires 11,2274+2mJ, which is two orders
of magnitudes more energy than the energy required by WART (i.e., only
53+35mJ). This is attributed to the fact that the transceiver of a sensor in

32

Energy Consumption for Query Set: ST (for all n sensors)

Dataset:Intel54, n=54, d=14, e=31, link=250kbps Energy Consumption for Query Set: MTF (for all n sensors)
100000 Dataset:Intel54, n=54, d=14, e=31, link=250kbps
T T T T T T T T
TAG —— 100000 T T T T T T T T T
COUGAR ---x--- TAG ——
WART ----- COUGAR ---x---

10000

10000

5 3
i 1000 BN st hx 3 #5605 sl o K o o B S 1000 %, ot s Kot Pocse, Wiomec o M KX IS 8
K Xxihx Xx ¥ R ool A 5 Rt ' W i
g \B«‘J;}x.&)& x""‘x.‘ ,’XX;ZX TR *%X&fkw ;&&g ’;‘ el i s k%s“,' iRt X‘x | ,\j"f k’% i 'S
= X * * ¥ i 3 X * ¥ i
w 3 x
100 f i 100 | 3
10 T S S
10 : : : : : 1 ! ! ! 0 100 200 300 400 500 600 700 800 900 1000
0 100 200 300 400 500 600 700 800 900 1000 Epoch Number

Epoch Number

Energy Consumption for Query Set: MTA (for all n sensors)
Dataset:Intel54, n=54, d=14, e=31, link=250kbps

100000 T

TAG ——

10000 ¥ &

X % % 5
1000 WX 20%%5 % X Mx < X ¥ B et
t ¥4 ' %R e ;,,.,‘)(».IQS?‘] ;{i‘fﬁa\x X)‘i Ui y k‘*’&} %“,ZQ

Energy (mJ)

100 f 4

10 ! ! ! ! ! ! ! ! !
0 100 200 300 400 500 600 700 800 900 1000

Epoch Number

Fig. 7. Energy consumption for Single-Tuple (top-left) and Multi-Tuple
(top-right and bottom) answers. The plots indicate the individual results for
the TAG, Cougar and WART data acquisition algorithms. In all figures we observe
that WART is at least one order of magnitude more efficient than its competitors.

TAG is enabled for ~2.14 seconds in each epoch (i.e., |e/d| = 31 (epoch
duration)/14 (tree depth)), while in WART it is only enabled for ~146ms
on average. Enabling the transceiver for over two seconds in TAG is clearly
the driving force behind its inefficiency. Figure 7 (top-left) also shows that
the WART energy curve quickly drops to the mean value of 53m.J within the
first epoch (i.e., the sudden drop at the beginning of the curve). Notice that
WART runs very much like Cougar during the first epoch but our algorithm
then intelligently exploits the waking window cost to preserve energy.

Figure 7 (top-left) also shows that the Cougar algorithm requires on average
882+250mJ, which is one order of magnitude more than the energy required
by WART. The disadvantage of the Cougar algorithm originates from the fact
that the parents keep their transceivers enabled until all the children have
answered or until the local timer h has expired (in cases of failures). Thus,
any failure is automatically translated into a chain of delayed waking windows
all of which consume more energy than necessary. One final observation re-
garding the Cougar algorithm is that it features a large standard deviation
(i.e., 250m.J), which signifies that certain nodes consume more energy than

33

others. This is attributed to the fact that the cost of failures in Cougar is
proportional to the depth of the node that caused the failure. In particular,
failures at a large depth (i.e., closer to the leaf nodes) will generate a larger
chain of waking windows, thus will be more energy demanding than failures
that occur at a small depth (i.e., closer to the sink).

Energy Consumption for Multi-Tuple Answers: We shall next measure
the energy cost of the queries with multi-tuple answers (i.e., MTF and MTA)
again over the Intel54 dataset and present our results in Figure 7 (top-right
and bottom) and also summarize these results in Table 2 (first row). From
the figures and the table we can draw the following conclusions: i) the WART
algorithm has the same compelling benefits compared to TAG and Cougar,
although the incurred workload for the three queries is very different; and ii)
the MTA query consumes on average less energy than the ST query for all
algorithms (see Table 2 (first row)). This is attributed to the fact that MTA
is associated with a predicate that limits the cardinality of sensor answers
below one in certain cases, while the ST query yields exactly one answer per
sensor. On the contrary, the MTF query has an increased energy consumption
compared to the ST query (i.e., between 1-10mJ) as it generates multiple
tuples at each node. To explain this, first notice that it is relatively inexpensive
to pack a small number of additional tuples into a message, given that the
transmission cost is dominated by the packet header and not by the payload.
As the cardinality of an MTF query is bounded above by the number of sensors
n (see query MTF), in practice this yields only a small increase in the number
of messages. Thus, the additional energy consumption of the MTF query over
the ST query is very small.

By evaluating the same algorithms over the medium-size GDI140 dataset, pre-
sented in Table 2 (second row), we observe that WART continues to maintain
a competitive advantage over the other two algorithms. Another observation
is that the TAG algorithm has a slightly better performance compared to the
previous experiment but its performance is still two orders of magnitudes worse
than WART. In particular, we noticed that the TAG-to-WART performance
ratio is slightly decreased (i.e., 136%) compared to the respective performance
ratio recorded with the Intel54 dataset which was 211%. Such a decrease is
explained as follows: the depth of the query routing tree in GDI140 was 22
and thus each sensor has to maintain its radio open for /~1.40 seconds in each
epoch (i.e., |e/d] = 31 (epoch duration)/22 (tree depth)). On the contrary,
the depth of the query routing tree in Intel54 was 14 and thus each sensor
has to maintain its radio open for a larger window in each epoch (i.e., ~2.14
seconds).

34

Energy (mJ)

9000

8000

7000

6000

5000

4000

3000

Energy Consumption for Query Set: ST (for all n sensors)
Dataset:Intel540, n=540, d=22, e=31, link=250kbps

100 200 300 400 500 600

700 800 900 1000

Energy (mJ)

9000

8000

7000

6000

5000

4000 |

3000

Energy Consumption for Query Set: MTF (for all n sensors)
Dataset:Intel540, n=540, d=22, e=31, link=250kbps

et L T S e e s L

0 100 200 300 400 500 600 700 800 900 1000

Epoch Number Epoch Number

Energy Consumption for Query Set: MTA (for all n sensors)
Dataset:Intel540, n=540, d=22, e=31, link=250kbps

9000 ‘ T ‘
COUGAR ---x---
s . WART -x---
el I A R O TS S -
T O LI T L WA N A S T
LI IR RS A e T SRS o I
o 7ooo PR AT RS SRR R T
2 o Lix ;'k § & x
B 6000 |
[
=4
w 3
5000 f- g
4000 i
R e e tas L R DS L L
3000 Il Il Il Il Il Il *\ Il Il

0 100 200 300 400 500 600 700 800 900 1000
Epoch Number

Fig. 8. Energy Consumption in a Large-Scale Sensor Network (Intel540).
The plots indicate the individual results for the ST, MTF and MTA queries using
the Cougar and WART algorithms (we omit the TAG curve in this plot due to its
inefficiency (i.e., 189,707m.J)).

7.2.2 Probing WART in a Large-Scale Network

In the third experiment of this series we evaluate the WART algorithm against
the Cougar algorithm using the Intel540 dataset, which represents a large-
scale wireless sensor network. We have omitted the presentation of the TAG
algorithm as it has a very high energy cost (i.e., 189, 707m.J). To facilitate
our presentation we also summarize the mean and standard deviation of our
results in Table 2 (third row).

The plots in Figure 8 show that WART requires only 3,446mJ on average
(i.e., the mean of the plots for all three queries) while Cougar requires as
much as 7,281mJ for the acquisition of values from all 540 nodes. This shows
that WART retains a significant competitive advantage over Cougar even for
large-scale wireless sensor networks. For all queries we noticed that the WART-
to-Cougar performance ratio is slightly increased (i.e., 47%) compared to the
respective performance ratio noticed with the Intel54 dataset (which was only
6%). Such an increase was expected as larger networks have a higher proba-
bility of transient network conditions and arbitrary failures. The above char-
acteristics are causes that lead to the disruption of the query routing tree syn-
chrony. Nevertheless, the WART approach is still 53% more energy efficient

35

Table 2

Energy Consumption results for experimental series 2: Evaluation of the WART,
Cougar and TAG algorithms under different queries and datasets.

Dataset | ,\ - Query ST MTF MTA
TAG 11,227402mJ | 11,228+02mJ | 11,225401mJ
Intel54 Cougar 8824£250mJ | 893+£239mJ | 877+239mJ
WART 53£35mJ 56:£37mJ 50-£21mJ
TAG 58,380£24mJ | 58,380+25mJ | 58,374426mJ
GDI140 Cougar 1,435+176mJ | 1,443+181mJ | 1,432+176mJ
WART 429+39m]J 438+37m]J 425£34m]J
TAG 189,6914+53mJ | 189,707-+£49mJ | 189,670+51mJ
Tntel540 Cougar 7,260437mJ | 7,317£37mJ | 7,2574+37mJ
WART 3,431+14mJ | 3,510£12mJ | 3,398+13mJ

than Cougar under these limitations, thus WART can have many practical
applications in large-scale environments.

7.2.3 WART Adaptation Phase FEvaluation

In the last experiment of this series we evaluate the WART adaptation algo-
rithm. So far we have assumed that the critical path is re-constructed in every
epoch during the execution of a query, thus introduced an additional cost of
O(n) messages. In the following experiments we aim to investigate the effi-
ciency of the WART adaptation algorithm and verify the savings we claimed
in Section 4.4. We compare WART with no adaptation against a version that
employs the adaptation rules of Algorithm 2 during data acquisition. For this
experimental series we utilize the Intel54, Intel540 and GDI140 datasets and
present the results for the MTF query only as the other two queries expose a
similar behavior.

Figure 9 (top-left, top-right) shows that the invocation of the adaptation rules
in Algorithm 2 for the Intel540 and GDI140 large scale networks can yield
additional energy savings of 60mJ and 36mJ respectively. Given that one
packet in our setting was 128 bytes we can estimate that the transmission
of such a packet requires 144uJ (see Section 6). In the case of the Intel540
dataset, the quantity of 60mJ is approximately equivalent to 416 messages (i.e.,
60m.J/144uJ) whereas in the case of the GDI140 dataset the quantity of 36mJ
is approximately equivalent to 290 messages (i.e., 36m.J/144u.J). This result is
consistent with our analysis were we expected O(n) additional messages during
the dissemination phase. Figure 9 (bottom) shows the adaptation algorithm

36

WART Adaptation Algorithm E ion for Query Set: MTF (for all n sensors) WART A ion Algorithm ion for Query Set:MTF

Dataset:Intel540, n=540, d=22, e=31, link=250kbps Da?aset:GDlMO, n=140, d=25, link=250kbps
3700 T T T T T 600 T T T T T
WART ---%--- WART —+—
3650 [+ WART (Adaptation) ------ 550 WART (Adaptation) ---x--- |

3600 1
3550
3500 k
3450 7

Energy (mJ)
Energy (mJ)

3400
3350 - 1
3300 -] 250 |

3250 I I I I I I I I I 200
10 20 30 40 50 60 70 80 90 100 0O 100 200 300 400 500 600 700 800 900

Epoch Number Epoch Number

WART Adaptation Algorithm Evaluation for Query Set:ST
Dataset:Intel54, n=54, d=14, link=250kbps

68 T T T T
WART —+—
66 WART (Adaptation) ---x--- |

64 - -

62 | R
60 WWM
58 4 R

WMWWXWW&XQ

54 | g

Energy (mJ)

56

52 1 1 1 1 1 1 1 1 1
0O 100 200 300 400 500 600 700 800 900 1000

Epoch Number

Fig. 9. WART’s Adaptation algorithm evaluation for the Intel540 dataset (top-left),
GDI140 dataset (top-right) and the Intel54 dataset (bottom).

on a small scale network (i.e., Intel54). The result indicates that even for
such small-scale networks we might observe some energy savings but these
are not very significant (i.e., only 2m.J). This is attributed to the fact that
the adaptation rules in small-scale networks are not invoked as frequently as
workload deviations occur more rarely.

7.8 Experimental Series 3: Fvaluation of the ETC algorithm

In the third experimental series we assess the efficiency of the MicroPulse™
ETC algorithm. We start out by assessing the construction quality of the ETC
algorithm and then proceed with an in-depth evaluation of our algorithm.

7.83.1 Measuring the Balancing Error
Our first objective is to measure the quality of the tree, with regard to the

balancing factor, that is generated by the ETC algorithm. Thus, we measure
the balancing error of the generated trees as this was presented in Section 5.3.

37

1000

Balancing Error for all datasets Energy Consumption due to collisions (for all n sensors)
Dataset:Intel540, n=540, d=22, e=31, link=250kbps

—
it
Yo

1600

4000

1400

3500 f ok
1200 T

3000 -
1000

2500 -
800

2000 -

Energy (mJ)

600

1500 -

Balancing Error

400

1000 -

500 e O XXX, e ol e
[raer N Amast] S 0 I I L L I I I I L
Intel54 GDI140 Intel540 0 100 200 300 400 500 600 700 800 900 1000
Dataset Epoch Number

Fig. 10. Left: Measuring the Balancing Error of the FHF (Tj,put), CETC (TcrTc)
and ETC (Tgrc) algorithms; Right: Energy Consumption due to re-transmissions
in an unbalanced topology (Tinput) and in a near-balanced topology (Trrc)

Recall that the Balancing_Error of a query routing tree was defined as follows:
Balancing_Error(Teprc) Z |8 — Z PM,

where f = /n and PM;; = 1 denotes that node ¢ is a parent of node j
and PM,;; = 0 the opposite. Notice that this table is fragmented vertically in
the case of the distributed ETC algorithm but can be obtained easily with a
message complexity of O(n), where each message has a size of O(n?) in the
worst case.

For this experiment we generated one query routing tree per dataset (i.e.,
Intel54, GDI140 and Intel540) using the three described algorithms: i) the
First-Heard-From approach, which constructs an ad-hoc spanning tree 715,
without any specific properties; ii) the CETC algorithm, which transforms
Tinput into the best possible near-balanced tree Topre in a centralized manner;
and iii) the ETC algorithm, which transforms 7;,,,,; into a near-balanced tree
Terc in a distributed manner.

Figure 10 (left), presents the results of our evaluation which demonstrates
the following properties: i) All three approaches feature some balancing error,
which indicates that in all cases it is not feasible to construct a fully bal-
anced tree Thoancea- This is attributed to the inherent structure of the sensor
network where certain nodes are not within communication radius from other
nodes. ii) The second observation is that the FHF approach has the worst Bal-
ancing_Error, which is an indicator that FHF can rarely produce any proper
balanced topology and that increases data transmission collisions and energy
consumption (shown in next experiment). In particular, the balancing error
of the FHF approach is on average 91% larger than the respective error for
the CETC algorithm. iii) The third and most important observation is that
the distributed ETC algorithm is only 11% less accurate than the centralized
CETC algorithm. Therefore, even though the ETC algorithm does not feature

38

any global knowledge, it is still able to create a near-balanced topology in a
distributed manner.

7.3.2 Energy Consumption of ETC

In order to translate the effects of the Balancing_Error into an energy cost, we
conduct another experiment using the Intel540 dataset. Specifically, we gener-
ate two query routing trees: a) Tj,,ut, constructed using the First-Heard-From
approach, and b) Tgrc constructed using the ETC algorithm. We configure
our testbed to only measure the energy required for re-transmissions due to
collisions in order to accurately capture the additional cost of having an un-
balanced topology.

Figure 10 (right) displays the energy consumption of the two structures. We
observe that the energy required for re-transmissions using 7y, py is 3,314£50m.J.
On the other hand, Trre requires only 566+22mJ which translates to addi-
tional energy savings of 83%. The reason why Tpr7rc presents such great addi-
tional savings is due to the re-structuring of the query routing tree into a near
balanced query routing tree which ensures that data transmissions collisions
are decreased to a minimum.

7.4 Experimental Series 4: Evaluation of the MicroPulset Framework

In the fourth experimental series we assess the efficiency of the complete
MicroPulset framework, which deploys the ETC algorithm to balance the
query routing tree and then utilizes the WART algorithm to optimize the
waking windows of the sensor nodes. In particular, we conduct two experi-
ments focusing on energy consumption and system lifetime.

7.4.1 Energy Consumption of MicroPulse™

In the first experiment of this series we measure the energy consumption of
the integrated WART and ETC algorithms using the Intel540 dataset and the
MTF query. We have observed similar results for the other combinations of
query-to-datasets as well and omitted these results for brevity.

Figure 11 (left) illustrates the energy savings of using the ETC algorithm
in conjunction with WART. While WART requires on average 3,510+126mJ,
MicroPulset uses only 7494269mJ which translates in an additional 78% de-
crease in energy consumption on average. In particular, we have observed
a threefold improvement of MicroPulset compared to the execution of the
WART algorithm in isolation. Additionally, we have noticed that the near-

39

Energy Consumption for Query Set: MTF (for all n sensors) Network Lifetime
Dataset:Intel540, n=540, d=22, e=31, link=250kbps Dataset:Intel540, Query Set: MTF, n=540, d=22, e=30, link=250kbps

9000 T T T T T T T

60000 T T T T T T T

WART —— B TAG
8000 |- MicroPulse” (WART+ETC) -=-%--- g i COUGAR -+
50000 |} WART ------- i
7000 1 Y MicroPulse
6000 1 40000 |3\ |

5000 f-

4000 k 1

3000

Energy (mJ)
Energy (mJ)

30000 | i §

20000 b} % g
2000 R P

1000 [pnees5subssosatsaniomoctisismsamtstiol sl indsmoonissssasatoSandsons 10000 7
!

0 " " " " " " " " :
0 100 200 300 400 500 600 700 800 900 1000 0 ” - L :
171 4433 9238 43824

Epoch Number Epoch Number

Fig. 11. Left: Energy Consumption comparison of MicroPulse™ against WART.
The plot indicates that the ETC technique provides a three-fold improvement to
the savings incurred by the WART algorithm. Right: Network Lifetime for the
various algorithms presented in this paper.

balanced routing tree generated by the ETC algorithm will not only reduce
data collisions, and thus data re-transmissions, but will also have a positive
effect on the WART scheduling algorithm.

The reason why the efficiency of the WART algorithm increases under no fail-
ures can be explained as follows: In a topology with limited failures the critical
path cost is not re-computed very often. Thus, the communication overhead is
minimized. Additionally, in a topology with a small number of failures we also
have a smaller number of parent waiting for their children (i.e., a fewer num-
ber of expired h timers). Consequently, minimizing data transmission collisions
automatically triggers a whole range of new characteristics which improve the
overall quality of our framework.

7.4.2 Network lifetime

The final performance criterion we have considered is network lifetime. We
define network lifetime as the average amount of energy in the network. In
particular, let the following summation denote the amount of energy that is
available at time instance t in a network of n sensors:

Enefrgy(t) — 2?21 available_ene’f’gy(sia t)/n

where available_energy(s;,t) denotes the energy that is available at sensor s;
(1 < n) at time instance t. We define the network lifetime, similar to [53], as
the time instance ¢ at which Energy(t’) = 0. Note that this applies only to
the case where sensors operate using batteries. Double batteries (AA) used
in many current sensor designs (including the TelosB sensor) operate at 3V
voltage and supply a current of 2,500 mAh (milliAmpere per hour). Assum-
ing similar to [51], that only 2,200mAh is available and that all current is
used for communication, we can calculate that AA batteries offer 23,760.J

40

(2,200mAh x 60min x 60s x 3V'). In order to speed up our experiments we
start with an initial energy of 60,000m.J subtract at each epoch and for each
sensor the energy required for communication. When terminate this iteration
when the termination condition is satisfied.

Figure 11 (right) illustrates the average energy status of the sensor network,
at each epoch, during the execution of a query. We notice that the energy of
sensors under TAG is consumed far faster than the MicroPulse™ framework,
leading to a lifetime of just 171 epochs (i.e., 85 minutes). Cougar comes second
by offering 4,433 epochs (i.e., 36 hours) and WART third with 9,238 epochs
(i.e., 77 hours). Finally, MicroPulse™ reaches its limit far later at epoch 43,824
(i.e., 365 hours) and this can be translated into a ~78% increase of the network
lifetime.

7.4.83 Multi-query Execution

In a real system, it will be necessary to execute several queries, possibly be-
longing to individual users, concurrently. In this subsection we discuss at an
abstract level how this can be realized. First, notice that the WART algo-
rithm, which minimizes data reception inefficiencies by profiling recent data
acquisition activity, can maintain separate profiles for the individual queries
running over a given query routing tree. Furthermore, the ETC algorithm,
which generates a near-balanced tree topology that minimizes data collisions,
is query-independent. In particular, an ETC tree reconfigures itself based on
a balancing factor that is derived directly from the branching factor of a node
in a query routing tree. Consequently, the same physical tree might apply
to any query running over a MicroPulse™ framework. The above discussion
shows that it is relatively easy to extend the MicroPulse™ framework into a
multi-query execution environment although a detailed investigation of this
parameter is outside the scope of this paper.

8 Related Work

Power conservation mechanisms have been proposed virtually at all layers
of the traditional layered sensor communication stack. All these approaches
attempt to decrease the energy consumption with two basic techniques: i) by
disabling/hibernating the radio transceiver during periods of inactivity, and
ii) by improving the sensor node’s operation (e.g., voltage scaling, employing
multiple power levels). Most of these techniques are complementary to the
techniques described in this paper while the rest come with their own trade-
offs as we will show shortly.

41

In this section, we present an elaborate overview of techniques that decrease
communication related power consumption in WSNs, using the widely adopted
ISO/OSI communication stack [29]. Such a categorization allows one to accu-
rately capture the main focus and limitations of each presented technique. We
shall also refer to cases of cross-layer optimizations individually. For the re-
mainder of this section, we will present the universe of techniques in a bottom-
up manner, starting from the physical layer and moving up to the application
layer where MicroPulse™ belongs to. We omit the Presentation and Session
layers of the typical ISO/OSI stack as none of the presented techniques ad-
dresses these layers specifically.

Physical Layer techniques: This layer relates to the low-level sensor device
hardware (circuitry, MCU, transceiver, etc) thus the opportunity for software-
level power management is fairly limited. Yet, there are a few works [21,49]
that look at individual and local power management optimizations.

Examples of these techniques are the Dynamic Voltage Scaling (DVS) and
Embedded power supply for low power Digital Signal Processor (DSP) [21]
which are effective techniques for reducing the energy consumption of the
CPU. The goal of these approaches is to adapt the processor’s power sup-
ply and operating frequency to match any given computation load without
degrading performance. Dynamic Power Management (DPM) [49] is another
work that utilizes different power models to shut down various components
(e.g., radio transceiver, CPU) when these are not required to operate. All of
the above techniques, and generally any local power conservation mechanism
at the physical layer, are supplementary to the MicroPulse™ framework we
presented in this paper.

MAC Layer techniques: The Medium Access Control (MAC) layer facil-
itates the transfer of messages to and from the physical layer. Most of the
protocols developed for the MAC layer deploy explicit mechanisms to avoid
collisions when multiple sensor nodes attempt to access a shared channel. Most
of the sensor network related works presented in this layer [50,48,60,40] min-
imize energy consumption by minimizing collisions and overall usage of the
shared access medium.

The Coordinated Power Conservation algorithm (CPC) [50] is an example of
a MAC-layer power management protocol that coordinates the sleeping inter-
vals of sensor nodes with the aid of a backbone. CPC starts out by selecting a
set of backbone nodes as CPC servers. Next all CPC clients that run on non-
backbone nodes, request to turn the transceiver of the sensor node off when
there is no communication activity in order to conserve power and extend net-
work lifetime. CPC servers running on backbone nodes serve as coordinators
to synchronize sleeping schedules of nodes within their coverage areas. The
intuition of turning off the radio transceiver during periods of inactivity is

42

very similar to the WART algorithm of the MicroPulse™ framework. However,
CPC servers coordinate in a distributed manner without obtaining any global
information from the base station. That does not provide CPC server with a
universal view of the system. Furthermore, the scheduling on WART is based
on the query workload incurred on each sensor node while in CRC misses the
inclusion of such high-level semantics.

Power-aware Multi-Access Protocol with Signaling (PAMAS) [48], is another
MAC-layer power management protocol that utilizes two independent radio
channels in order to avoid overhearing among neighboring nodes. PAMAS does
not attempt to reduce idle listening which is a major disadvantage as nodes
have their radio enabled during periods of inactivity reception. However, bat-
tery power is saved by intelligently turning-off sensor nodes that are not in ac-
tive transmission. On the other hand, the popular Sensor-MAC (S-MAC) [60],
utilizes a synchronization scheme that allows sensor nodes to realize periodic
listening and sleeping during busy periods (i.e., when transmission from other
nodes is detected). Furthermore, S-MAC consists of two additional compo-
nents that handle: i) collision and overhearing avoidance by allowing sensor
nodes receiving control packages not destined to them go to sleep, and ii) mes-
sage passing by segmenting long messages into smaller ones and transmitting
in a burst (i.e., RT'S/CTS control messages are not used for each fragment).
S-MAC has been further enhanced in [40] to minimize the end-to-end delay.
Both PAMAS and S-MAC achieve high energy savings by allowing sensor to
sleep periodically. However, none of these approaches considers the underly-
ing topology of the sensor network, intra-sensor relationships and high-level
query semantics. In particular, these techniques do not consider the workload
of a continuous query, rather they assume a random variable workload. Recall
that in MicroPulse™, we minimize collisions by constructing a near balanced
routing tree through the ETC algorithm. Nevertheless, since the S-MAC pro-
tocol has been successfully integrated in TinyOS [60] as one of the primary
MAC protocols, these techniques extend the power management capabilities
of MicroPulset inherently.

Sensornet Protocol (SP) [41], introduces a unified link level abstraction that
is part of the sensor network architecture proposed in [12]. Specifically, SP
provides shared neighbor management and message pool interfaces that allow
network protocols to exchange messages efficiently and choose neighbors wisely
without concentrating on link specifics. To accomplish this, these interfaces
encapsulate the mechanisms of the particular link and physical layers that
operate below SP. The authors show that various link-layer protocols can
be expressed in terms of SP and subsequently mapped efficiently to various
different link-level power management mechanisms.

Network Layer techniques: This layer is responsible for delivering packets
from a source node to a destination node through some routing mechanisms. In

43

WSNs, routing is accomplished using multi-hop messages, thus many mech-
anisms in this layer attempt to discover optimal routing paths for energy
efficient delivery of messages through intermediate hosts [19,13,58,22].

The Power-Aware Routing (PAR) [19] technique proposes a routing policy that
balances the overall power in the network by discovering routes that consume
the least possible energy. Since in a non-uniform network, the majority of nodes
do not consume power in an identical fashion, PAR favors nodes with generous
power reserves. Another technique is the Minimum Connected Dominating
Sets (MCDS) routing algorithm [13] which employs a virtual backbone that
provides shortest paths for routes as well as route updates in cases of node
movements in order to minimize the overall energy required for routing multi-
hop packets.

Both PAR and MCDS approaches assume an a priori established query routing
tree. Any optimizations suggested by both approaches do not alter the state of
the query routing tree. On the other hand, the MicroPulse™t differs from these
approaches as the ETC algorithm reconstructs a near-balanced tree in order
to minimize collisions prior to any further optimizations. Certain modules of
PAR and MCDS (e.g., shortest path discovery) can be used in conjunction
with MicroPulset in order to achieve even more energy savings.

In Modular Network Layer [15] the authors decompose the network layer into
smaller components that can be used by several protocols in parallel. This net-
work layer operates on top of the popular Sensornet link-layer Protocol [41].
The intuition behind their approach is that the majority of network protocols
have many commonalities. Encapsulating these commonalities and exposing
them as service interfaces enables faster development of new protocols and
run-time sharing of components. The authors evaluate their approach and
find that Modular Network Layer can reduce both the memory and code of
network protocols that run concurrently. Consequently, this work is supple-
mentary to MicroPulse™t, as our protocol could have been implemented using
this intermediate framework rather than in a standalone.

Transport Layer techniques: The transport layer is responsible for the
transfer of messages between two or more end systems using the network
layer. One of the main objectives of the transport layer is the reliable and cost
effective delivery of transferred messages between applications. The evolution
of the techniques in this layer has been severely hampered by the fact that
sensor networks feature node failures and collisions making reliable and cost
effective communication often impossible.

One of the few works that addresses the above issues is the TCP-Probing [54]

communication protocol, which introduces the concept of a probe cycle in-
stead of standard TCP re-transmissions, congestion window and threshold

44

adjustments. During probe cycles, data transmission is suspended and only
probe segments are sent. The proposed scheme achieves high throughput
performance whilst in parallel decreases the overall energy consumption for
transmission. This is done without damaging the end-to-end characteristics of
TCP. Flush [26] is another transport layer protocol for multi-hop wireless net-
works. Flush provides end-to-end reliability, reduces transfer time and adapts
to time-varying network conditions. To accomplish these properties, Flush uses
end-to-end acknowledgments, implicit snooping of control information and a
rate-control algorithm that operates at each hop along a flow.

In contrast to the probe cycles of TCP-Probing and end-to-end acknowledg-
ments of Flush, MicroPulset uses the notion of a waking window during which
a sensor may transmit a message repeatedly until it is successfully received by
the recipient. The aforementioned techniques would introduce further delays
as well as more energy waste since the sensors would have to exchange more
messages in order to synchronize.

Application Layer techniques: The main objective of this high level layer
is to exploit the semantics of the network or application and low-level data in
order to optimize the network structure among nodes and boost power man-
agement. Consequently, this layer has implicit interactions with lower levels of
the communications stack (often referred to as cross-layer optimizations [2]).
The techniques in this category can roughly be classified in the following
categories: i) local techniques, in which low-level data semantics dictate the
reaction of the application, and ii) cluster-based techniques, in which the re-
action of the application is dictated by the cluster semantics (e.g., network
proximity).

Application-Driven Power Management for Mobile Communication (ADPM) [28],
is an example of an application-layer technique that enables the dynamic
power configuration of the communication device. The goal of this work is
to determine the appropriate tradeoff for battery lifetime versus response de-
lay, while adjusting the sleep duration of the communication device. ADPM,
just like the techniques in the physical layer, which adjust the power supply of
the processor, is supplementary to our approach. Adaptive Energy-Conserving
Routing (AdECoR) [57], is another application layer protocol that utilizes two
algorithms for routing in resource constrained WSNs. The intuition behind this
approach is that although switching-off the communication device may result
in energy conservation it may also introduce delays in the network. AdECoR
attempts to find a tradeoff between energy conservation and latency by uti-
lizing application-level information. AdECoR differs from MicroPulse™ as its
application-level information does not include the high level query semantics
used in MicroPulse™. Furthermore, the concept of introducing delays in order
to conserve power is not acceptable in MicroPulset as we assume that queries
have specific response time requirements that must be met.

45

The second class of application layer techniques includes those techniques that
use clustering mechanisms [58,22,9]. An example of these techniques is Geo-
graphical Adaptive Fidelity (GAF) [58], which obtains location information
using the Global Positioning System (GPS) in order to connect sensor nodes
to a virtual grid (i.e., a semantic overlay based on geographical proximity. It
then saves energy by keeping sensor nodes located in a particular grid area
in sleeping state. The sleeping schedule uses a turn-based approach that aims
to balance the load incurred on each sensor. Energy-FEfficient Communica-
tion Protocol for Wireless Micro-Sensor Networks (LEACH) [22] is another
cluster-based technique that minimizes overall energy consumption in WSNs
by rotating the cluster head nodes in a random manner. This rotation allows
the distribution of the energy load evenly among the sensor nodes in the net-
work without draining th energy resources of an individual sensor node. One
final cluster-based protocol is SPAN [9], which builds on the observation that
when a region of a shared-channel has a sufficient density of nodes, only a
small number of them needs to be present at any time to forward traffic for
active connections. To accomplish this, SPAN utilizes a distributed, random-
ized algorithm that allows sensors to make local decisions as to when sleeping
is appropriate.

GPS and SPAN, like MicroPulse™ take advantage of global information to
preserve energy like MicroPulse®. Both approaches switch-off some sensors
based on some application-level parameters and force other sensors to seek
alternate routing paths. However, switching-off some sensors means that they
cannot participate in a given query and as a result, valuable results may be
lost even for shorts period of time. LEACH differs from our approach since in
MicroPulse™t all nodes participate in a given query and none plays a separate
role (e.g., cluster head) nor has more energy reserves than others.

The recent trend in wireless sensor networks is to interconnect existing sen-
sor networks through dedicated web-based or geospatial-based information
systems. Such systems operate over different operating systems, communica-
tion protocols and applications. To address the problem of communicating
with such diverse sensor network systems, these works [1,39] have developed
middleware systems that enable integration and management of many WSN
sites. Additionally, multi-tier sensor systems like TENET [17], that aim to
combine the low-power sensor devices we discuss in this work with powerful
32-bit nodes (e.g., Stargates or ordinary PCs), are another direction in sensor
networks optimization. Yet, all these techniques are complementary to the ap-
proaches we have outlined in this paper as our techniques structure efficient
and well- formed WSN deployments while middleware techniques utilize these
as a building block.

46

9 Conclusions and Future Work

In this paper we present MicroPulse™, a novel framework for minimizing the
consumption of energy during data acquisition in WSNs. MicroPulse™ intro-
duces two novel concepts: i) the Workload-Aware Routing Tree (WART) al-
gorithm, which is established on profiling recent data acquisition activity and
on identifying the bottlenecks using an in-network execution of the critical
path method; and ii) the Energy-driven Tree Construction (ETC) algorithm,
which balances the workload among nodes and minimizes data collisions. Our
experimentation with micro-benchmarks on the CC2420 radio chip and trace-
driven experimentation with real datasets from Intel Research Berkeley and
UC-Berkeley show that the MicroPulset algorithms provide orders of magni-
tudes energy reductions under a variety of conditions prolonging the longevity
of a sensor network.

In the future we plan to study how these ideas can be incorporated into ex-
isting data acquisition frameworks such as TinyDB and deploy them in a real
environment. Integrating our ideas in a fully functional declarative acquisition
system poses many additional challenges that we aim to tackle in the future
(e.g., low-level protocol integration, efficient internal structures, deployment
issues, etc.). We believe that by integrating these ideas in a fully functional
system will enable us to study system-level effects and thus better demonstrate
the efficacy of our proposed approaches.

Acknowledgments

We would like to thank Joe Polastre (UC Berkeley) for the Great Duck Is-
land data trace. This work was supported in part by the Open University
of Cyprus under the project SenseView, the US National Science Foundation
under projects S-CITT (#ANI-0325353) and AQSIOS (#11S-0534531) and the
European Union under the project mPower (#034707).

References

[1] K. Aberer, M. Hauswirth, A. Salehi, “Infrastructure for data processing in large-
scale interconnected sensor networks” In Proceedings of the 2007 International
Conference on Mobile Data Management, Mannheim, Germany, May 7 - 11,
2007, pp. 198-205.

[2] I.F. Akyildiz, M.C. Vuran, O.B. Akan, “A Cross-Layer Protocol for Wireless
Sensor Networks”, In Proceedings of the 40th Annual Conference on Information

47

Sciences and Systems, Princeton, NJ, USA, March 22-24, 2006, pp. 1102-1107.

[3] G. Amati, A. Caruso, S. Chessa, “Application-driven, Energy-efficient
Communication in Wireless Sensor Networks”, In Computer Communications,
Vol. 32, No. 5, 2009, pp. 896-906.

[4] P. Andreou, D. Zeinalipour-Yazti, P.K. Chrysanthis, G. Samaras, “Workload-
aware Optimization of Query Routing Trees in Wireless Sensor Networks”,
In Proceedings of the Nineth International Conference on Mobile Data
Management, Beijing, China, April 27-30, 2008, pp. 189-196.

[5] A. Banerjee, A. Mitra, W. Najjar, D. Zeinalipour-Yazti, V. Kalogeraki and D.
Gunopulos, “RISE Co-S : High Performance Sensor Storage and Co-Processing
Architecture”, Second Annual IEEE Communications Society Conference on

Sensor and Ad Hoc Communications and Networks, Santa Clara, California,
USA, 2005.

[6] A.T. Campbell, S.B. Eisenman, N.D. Lane, E. Miluzzo, R.A. Peterson, “People-
centric urban sensing”, In Proceedings of the Second annual international
workshop on Wireless internet, Boston, Massachusetts, Article No.18, 2006.

[7] A.T. Campbell, S.B. Eisenman, N.D. Lane, E. Miluzzo, R.A. Peterson, H. Lu, X.
Zheng, M. Musolesi, K. Fodor, G.S. Ahn, “The Rise of People-Centric Sensing”,
In TEEE Internet Computing Vol. 12, No. 4, July-August, 2008, pp.12-21.

[8] U. Cetintemel, A. Flinders, Y. Sun, “Power-efficient Data Dissemination in
Wireless Sensor Networks”, In Proceedings of the Third ACM International
Workshop on Data engineering for Wireless and Mobile Access, San Diego, CA,
USA, 2003, pp. 1-8.

[9] B. Chen, K. Jamieson, H. Balakrishnan, R. Morris, “Span: An Energy-
efficient Coordination Algorithm for Topology Maintenance in ad hoc Wireless
Networks”, In Proceedings of the Seventh Annual International Conference on
Mobile Computing and Networking, Rome, Italy, July 16-21, 2001, pp. 85-96.

[10] J. Considine, F. Li, G. Kollios, J. Byers, “Approximate aggregation techniques
for sensor databases”, In Proceedings of the 20th International Conference on
Data Engineering, Boston, MA, USA, 2004, p. 449.

[11] Crossbow Technology Inc. http://www.xbow.com/

[12] D. Culler, P. Dutta, C. T. Ee, R. Fonseca, J. Hui, P. Levis, J. Polastre, S.
Shenker, 1. Stoica, G. Tolle, J. Zhao, “Towards a Sensor Network Architecture:
Lowering the Waistline”, In Proceedings of the 10th conference on Hot Topics
in Operating Systems, Santa Fe, NM, Vol. 10, June 12 - 15, 2005, pp. 24.

[13] B. Das, V. Bharghavan, “Routing in ad-hoc Networks using Minimum
Connected Dominating Sets”, In IEEE International Conference on
Communications, Montreal, Que., Canada, June 08-12, 1997, pp. 376-380.

[14] A. Deligiannakis, Y. Kotidis, N. Roussopoulos, “Compressing Historical
Information in Sensor Networks”, In Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, Paris, France, 2004, pp. 449.

48

[15] C.T. Ee, R. Fonseca, S. Kim, D. Moon, A. Tavakoli, D. Culler, S. Shenker,
I. Stoica, “A Modular Network Layer for Sensornets”, In Proceedings of the

Seventh Symposium on Operating Systems Design and Implementation, Seattle,
WA, USA, November 6-8, 2006, pp. 249-262.

[16] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, D. Culler, “The
nesC Language: A Holistic Approach to Networked Embedded Systems”, In
Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, San Diego, CA, USA, 2003, pp. 1-11.

[17] O. Gnawali, K-Y. Jang, J. Paek, M. Vieira, R. Govindan, B. Greenstein, A.
Joki, D. Estrin, E. Kohler, “The tenet architecture for tiered sensor networks”,
In Proceedings of the 4th International Conference on Embedded Networked
Sensor Systems (SenSys 2006), Boulder, Colorado, USA. SenSys 2006: 153-166.

[18] S. Goel, T. Imielinski, “Prediction-based Monitoring in Sensor Networks:
Taking Lessons from MPEG”, In ACM SIGCOMM Computer Communication
Review, Vol. 31, No. 4, 2001, pp. 82-98.

[19] J. Gomez, A.T. Campbell, M. Naghshineh, C. Bisdikian, “Power-aware Routing
in Wireless Packet Networks”, In IEEE Mobile Multimedia Communications,
San Diego, CA, USA, November 15-17, 1999, pp. 380-383.

[20] J.L. Gross, J. Yellen, “Graph Theory & Its Application”, Chapman &
Hall/CRC Press, ISBN: 158488505X, 2005.

[21] V. Gutnik, A.P. Chandrakasan, “Embedded Power Supply for Low-Power
DSP”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
Vol. 5, No. 4, December, 1997, pp. 425-435.

[22] W.R. Heinzelman, A. Chandrakasan, H. Balakrishnan, “Energy-Efficient
Communication Protocol for Wireless Microsensor Networks”, In Proceedings of
the 33rd Hawaii International Conference on System Sciences, Washington, DC,

USA, Vol 8, 2000, pp. 3005-3014.

[23] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, “System
Architecture Directions for Networked Sensors”, In Proceedings of the Nineth
International Conference on Architectural Support for Programming Languages
and Operating Systems, Cambridge, MA, USA, November 12-15, 2000, pp. 93-
104.

[24] C. Intanagonwiwat, R. Govindan, D. Estrin, “Directed Diffusion: A Scalable
and Robust Communication Paradigm for Sensor Networks”, In Proceedings of

the The Annual International Conference on Mobile Computing and Networking,
Boston, MA, USA, August 6-11, 2000, pp. 56-67.

[25] Intel Lab Data http://db.csail.mit.edu/labdata/labdata.html

[26] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler, P. Levis, S. Shenker,
I. Stoica, “Flush: A Reliable Bulk Transport Protocol for Multihop Wireless
Networks”, In Proceedings of the Fifth ACM Conference on Embedded

Networked Sensor Systems, Sydney, Australia, November 6-9, 2007, pp. 351-
365.

49

[27] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, M. Turon,
“Health Monitoring of Civil Infrastructures using Wireless Sensor Networks”, In

Proceedings of the Sixth International Conference on Information Processing in
Sensor Networks, Cambridge, MA, USA, April, ACM Press, 2007, pp. 254-263.

[28] R. Kravets, P. Krishnan, “Application-driven Power Management for Mobile
Communication”, In Wireless Networks Journal, Vol. 6, No. 4, 2000, pp. 263-277.

[29] J.F. Kurose, K.W. Ross, “Computer Networking - A Top Down Approach, 5th
Edition”, Addison Wesley, ISBN: 0-13-607967-9, March 31, 20009.

[30] P. Levis, “TinyOS Implementation Documentation”, 2007.

[31] P. Levis, N. Lee, M. Welsh, D. Culler, “TOSSIM: Accurate and Scalable
Simulation of Entire TinyOS Applications”, In Proceedings of the 1st
international conference on Embedded networked sensor systems, Los Angeles,
California, USA, 2003, pp. 126-137.

[32] Q. Li, J. Beaver, A. Amer, P.K. Chrysanthis, A. Labrinidis, “Multi-Criteria
Routing in Wireless Sensor-Based Pervasive Environments”, In Journal of
Pervasive Computing and Communications, Vol. 1, No. 4, 2005, pp. 313-326.

[33] T. Liu, C. Sadler, P. Zhang, M. Martonosi, “Implementing Software on
Resource-Constrained Mobile Sensors: Experiences with Impala and ZebraNet”,

Proceedings of the 2nd international conference on Mobile systems, applications,
and services, Boston, MA, USA, June 6-9, 2004, pp. 256-269.

[34] S.R. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, “TAG: a Tiny
AGgregation service for ad-hoc sensor networks”, In Proceedings of the Fifth
Symposium on Operating Systems Design and Implementation, Boston, MA,
2002, pp. 131-146.

[35] S.R. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, ”The Design of an
Acquisitional Query Processor for Sensor Networks”, In Proceedings of the 2003

ACM SIGMOD international conference on Management of data, San Diego,
CA, USA, June 9-12, 2003, pp. 491-502.

[36] A. Mani, M. Rajashekhar, P. Levis, “TINX: a Tiny Index Design for Flash
Memory on Wireless Sensor Devices”, In Proceedings of the 4th international
conference on Embedded networked sensor system, Boulder, CO, USA, October
31-November 3, 2006, pp. 425-426.

[37] D. Moss, J. Hui, K. Klues, “Low Power Listening, Core Working Group, TEP
105

[38] R. Murty, A. Gosain, M. Tierney, A. Brody, A. Fahad, J. Bers, M. Welsh,
“CitySense: A Vision for an Urban-Scale Wireless Networking Testbed”, Harvard
University Technical Report TR-13-07, September, 2007.

[39] S. Nath, J. Liu, F. Zhao, “SensorMap for Wide-Area Sensor Webs”, In ACM
Computer journal Vol. 40, No. 7, 2007, pp. 90-93.

20

[40] N.A. Pantazis, D.J. Vergados, D.D. Vergados, C. Douligeris, “Energy efficiency
in wireless sensor networks using sleep mode TDMA scheduling”, In Ad Hoc
Networks, Vol 7, No. 2, March, 2009, pp. 322-343.

[41] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, I. Stoica, “A
unifying link abstraction for wireless sensor networks”, In Proceedings of the
3rd ACM conference on Embedded Networked Sensor Systems, San Diego, CA,
USA, November 2-4, 2005, pp. 76-89.

[42] J. Polastre, R. Szewczyk, D.E. Culler, “TELOS: Enabling Ultra-low Power
Wireless Research”, In Fourth International Symposium on Information
Processing in Sensor Networks, Los Angeles, CA, USA, April 25-27, 2005, pp.
364-369.

[43] M.A. Sharaf, J. Beaver, A. Labrinidis, P.K. Chrysanthis, “Balancing Energy
Efficiency and Quality of Aggregate Data in Sensor Networks”, In the
International Journal on Very Large Data Bases, Vol 13, No. 4, December,
2004, pp. 384-403.

[44] M.A. Sharaf, J. Beaver, A. Labrinidis, P.K. Chrysanthis, “TiNA: A Scheme
for Temporal Coherency-aware In-network Aggregation”, In Proceedings of the
3rd ACM international workshop on Data engineering for wireless and mobile
access, San Diego, CA, USA, September 19, 2003, pp.69-76.

[45] D. Sharma, V.I. Zadorozhny, P.K. Chrysanthis, “Timely Data Delivery in
Sensor Networks using Whirlpool”, In Proceedings of the 2nd international

workshop on Data management for sensor networks, Trondheim, Norway, 2005,
pp- 93-60.

[46] O. Shigiltchoff, P.K. Chrysanthis, E. Pitoura, “Adaptive Multiversion Data
Broadcast Organizations”, In the Information Systems Journal, Vol 29, No. 6,
September, 2004, pp. 509-528.

[47] V. Shnayder, M. Hempstead, B. Chen, G. Werner-Allen, and M.
Welsh, “Simulating the Power Consumption of Large-Scale Sensor Network
Applications”, In ACM SenSys, 2004, pp. 188-200.

[48] S. Singh, C.S. Raghavendra, “PAMAS-power Aware Multi-access Protocol
with Signalling for Ad-hoc Networks”, In ACM SIGCOMM Computer
Communication Review, Vol 28, No. 3, 1998, pp. 5-26.

[49] A. Sinha, A. Chandrakasan, “Dynamic Power Management in Wireless Sensor
Networks”, In IEEE Design and Test of Computers, Vol 18, No. 2, 2001, pp.
62-74.

[50] C. Srisathapornphat, C.C. Shen, “Coordinated Power Conservation for Ad
hoc Networks”, In Proceedings of the IEEE International Conference on
Communications (ICC 2002) , Vol 5, May, 2002, pp. 3330-3335.

[51] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, D. Culler, “An Analysis
of a Large Scale Habitat Monitoring Application”, In Proceedings of the 2nd

international conference on Embedded networked sensor systems, Baltimore,
MD, USA, November 3-5, 2004, pp. 214-226.

o1

[52] Texas Instruments, “CC2420, Single-Chip 2.4 GHz IEEE 802.15.4 Compliant
and ZigBee(TM) Ready RF Transceiver”, in: Texas Instrument Document,2007
http://www.ti.com/lit/gpn/cc2420.

[53] H. Thomas, S. Yi, H.D. Sherali, “Rate allocation in Wireless Sensor Networks
with Network Lifetime Requirement”, In The ACM International Symposium
on Mobile Ad Hoc Networking and Computing, Tokyo, Japan, 24-26, 2004, pp.
67-77.

[54] V. Tsaoussidis, H. Badr, “TCP-probing: towards an Error Control Schema with
Energy and Throughput Performance Gains”, In Proceedings of the International
Conference on Network Protocols, Osaka, Japan, November, 2000, pp. 12.

[55] Voltree Power Inc., http://www.voltreepower.com/

[56] A. Woo, D.E. Culler, “A Transmission Control Scheme for Media Access
in Sensor Networks”, In Proceedings of the Seventh Annual International
Conference on Mobile Computing and Networking, Rome, Italy, July 16-21,
2001, pp. 221-235.

[57] Y. Xu, J. Heidemann, D. Estrin, “Adaptive Energy-conserving Routing for
Multihop Ad-hoc Networks”, Technical Report TR~2000-527, USC/Information
Sciences Institute, October, 2000.

[58] Y. Xu, J. Heidemann, D. Estrin, “Geography-informed Energy Conservation for
Ad Hoc routing”, In Proceedings of the Sevent Annual International Conference
on Mobile Computing and Networking, Rome, Italy, 2001, pp. 70-84.

[59] Y. Yao, J.E. Gehrke, “Query Processing in Sensor Networks”, In Proceedings of
the First Biennial Conference on Innovative Data Systems Research, Asilomar,
CA, January, 2003, pp. 5-8.

[60] W. Ye, J. Heidemann, D. Estrin, "Medium Access Control with Coordinated
Adaptive Sleeping for Wireless Sensor Networks”, In IEEE/ACM Transactions
on Networking (TON), Vol 12, No. 3, 2004, pp. 493-506.

[61] V. Zadorozhny, P.K. Chrysanthis, A. Labrinidis, “Algebraic Optimization
of Data Delivery Patterns in Mobile Sensor Networks”, In Proceedings of
the Database and Expert Systems Applications, 15th International Workshop,
Zaragoza, Spain, August 30-September 3, 2004, pp. 668-672.

[62] D. Zeinalipour-Yazti, P. Andreou, P.K. Chrysanthis, G. Samaras, “MINT
Views: Materialized In-Network Top-k Views in Sensor Networks”, In
Proceedings of the International Conference on Mobile Data Management,
Mannheim, Germany, May 7 - 11, 2007, pp. 182-189.

[63] D. Zeinalipour-Yazti, P. Andreou, P.K. Chrysanthis, G. Samaras, A. Pitsillides,
“The MicroPulse Framework for Adaptive Waking Windows in Sensor
Networks”, In Proceedings of the International Conference on Mobile Data
Management, International Workshop on Data Intensive Sensor Networks,
Mannheim, Germany, May 11, 2007, pp. 351-355.

52

[64] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos, W. Najjar,
“MicroHash: An Efficient Index Structure for Flash-Based Sensor Devices”, In
Proceedings of the 4th conference on USENIX Conference on File and Storage
Technologies, San Francisco, CA, USA, December 13-16, 2005, pp. 31-44.

[65] D. Zeinalipour-Yazti, Z. Vagena, D. Gunopulos, V. Kalogeraki, V. Tsotras, M.
Vlachos, N. Koudas, D. Srivastava, “The Threshold Join Algorithm for Top-K
Queries in Distributed Sensor Networks”, In Proceedings of the 2nd international
workshop on Data management for sensor networks, Trondheim, Norway, August
29, 2005, pp. 61-66.

[66] ZigBee Alliance, “ZigBee specification”, In ZigBee Document 053474106,
Version 1.0, 2004.

23

