
A Network-aware Framework for Energy-efficient Data
Acquisition in Wireless Sensor Networks

Panayiotis G. Andreoua, Demetrios Zeinalipour-Yaztia,∗, George S. Samarasa,
Panos K. Chrysanthisb

aDepartment of Computer Science, University of Cyprus, Nicosia, Cyprus.
bDepartment of Computer Science, University of Pittsburgh, USA.

Abstract

Wireless Sensor Networks enable users to monitor the physical world at an ex-
tremely high fidelity. In order to collect the data generated by these tiny-scale de-
vices, the data management community has proposed the utilization of declarative
data-acquisition frameworks. While these frameworks have facilitated the energy-
efficient retrieval of data from the physical environment, they were agnostic of the
underlying network topology and also did not support advanced query processing
semantics. In this paper we present KSpot+, a distributed network-aware frame-
work that optimizes network efficiency by combining three components: i) the
tree balancing module, which balances the workload of each sensor node by con-
structing efficient network topologies; ii) the workload balancing module, which
minimizes data reception inefficiencies by synchronizing the sensor network ac-
tivity intervals; and iii) the query processing module, which supports advanced
query processing semantics. In order to validate the efficiency of our approach, we
have developed a prototype implementation of KSpot+ in nesC and JAVA. In our
experimental evaluation, we thoroughly assess the performance of KSpot+ using
real datasets and show that KSpot+ provides significant energy reductions under
a variety of conditions, thus significantly prolonging the longevity of a WSN.

Keywords: Wireless sensor networks, Top-k query processing,
Network-awareness.

∗D. Zeinalipour-Yazti, Email: dzeina@cs.ucy.ac.cy, Tel/Fax: +357-22-892755/01
Email addresses: panic@cs.ucy.ac.cy (Panayiotis G. Andreou),

dzeina@cs.ucy.ac.cy (Demetrios Zeinalipour-Yazti), cssamara@cs.ucy.ac.cy
(George S. Samaras), panos@cs.pitt.edu (Panos K. Chrysanthis)

Preprint submitted to Journal of Network and Computer Applications September 25, 2014

1. Introduction

Technological advances in embedded systems, sensor components and low
power wireless communication units have made it feasible to produce small-scale
wireless sensor devices that can be utilized for ad hoc monitoring infrastruc-
tures. Large-scale deployments of wireless sensor networks (WSNs) have already
emerged in environmental and habitat monitoring [36, 29], structural monitor-
ing [17] and urban monitoring [28, 5]. To simplify deployment, these systems
often employ middleware frameworks that allow users to disseminate queries and
collect runtime measurements of sensor data. Since, sensor devices feature a lim-
ited energy budget (typically powered using 2xAA batteries [22, 36, 29]), one of
the key design goals of any middleware system is power efficiency [35].

This study shows that although predominant data acquisition middleware frame-
works [22, 41, 42, 33, 15, 8, 13, 24, 38, 20, 7] have succeeded in decreasing
the overall energy consumption of the network by introducing power-aware in-
network processing algorithms, they have overlooked the important parameter of
the underlying network topology. In particular, most of the approaches establish
query dissemination and data acquisition on the premise of Query Routing Trees
(QRTs) constructed in an ad hoc manner [22, 41, 32] where each sensor selects
as its parent the first node from which a query was received. Although, this ap-
proach generates an effective routing scheme between sensor nodes, it may prove
highly inefficient as it does not provide any performance guarantees (e.g., for the
workload incurred on each sensor node.)

More specifically, ad hoc QRTs present two major sources of inefficiencies:
i) data transmission inefficiencies: QRTs do not provide any guarantee that the
query workload will be distributed equally among all sensors. This leads to col-
lisions during data transmissions that represent a major source of energy waste.
Consequently, unbalanced trees can severely degrade the network health and ef-
ficiency; and ii) data reception inefficiencies: QRTs do not define the waking
window (τ) of a sensing device (i.e., the continuous interval during which a sen-
sor node has to enable its transceiver, collect and aggregate the results from its
children, and then forward these results to its own parent.) Consequently, in many
cases it is an over-estimate that leads to significant energy waste.

Addressing the aforementioned inefficiencies enables the generation of energy-
efficient network topologies that rapidly decrease data reception and transmission
inefficiencies. However, additional energy savings can be achieved by closely
investigating the query execution process that takes place after generating an ef-
ficient topology. Current data acquisition middleware frameworks systems [22,

2

41, 15, 8, 13, 24, 34, 38] focus on producing a complete result set for a query.
Conversely, a number of studies [10, 43] model the retrieval of data on the pre-
sumption that the user is only interested in the k highest-ranked answers rather
than all of them. A Top-k query [10] focuses on the subset of most relevant an-
swers for two reasons: i) to minimize the cost metric that is associated with the
retrieval of all answers, and ii) to improve the quality of the answer set such that
the user is not overwhelmed with irrelevant results.

In this paper we present KSpot+, a data-centric distributed middleware frame-
work that advances the state-of-the-art by incorporating network-awareness to the
data acquisition process. To accomplish this, KSpot+ combines three basic com-
ponents:

1. the workload balancing module, whose objective is to decrease data recep-
tion inefficiencies by automatically tuning the waking window, locally at
each sensor without any a priori knowledge or user intervention;

2. the tree balancing module, whose objective is to decrease data transmission
inefficiencies by transforming the initial QRT into a more balanced tree in
a distributed manner; and

3. the query processing module, whose objective is to decrease the number and
size of packets transmitted to the network by facilitating advanced query
semantics (e.g., Top-k, Group-By queries.)

KSpot+ is an open-source middleware framework1 for WSNs that can be uti-
lized in numerous application domains including environmental monitoring [36,
29], big ephemeral events [40, 25], structural monitoring [17], urban monitor-
ing [28, 5], military/security applications [23, 30, 12], health monitoring [19, 27],
etc. We now describe how KSpot+ has been deployed in the context of two
projects:

Environmental Monitoring and Emergency Management: Dynamic monitor-
ing of forests and rivers as well as emergency management require the existence of
large sensor network deployments that can provide realtime results. They involve
hundreds of sensors and actuators deployed to cover thousands of square kilome-
ters of forest areas thus producing huge amounts of data that require ample time to
process. An important factor in sustaining such large sensor network deployments
is the cost of maintenance associated with battery replacement. There are solu-
tions today that can rapidly reduce this maintenance cost by utilizing alternative

1http://kspot.cs.ucy.ac.cy/

3

Figure 1: KSpot+ is currently deployed as part of the forest fire monitoring system of the Fire-
Watch project at the Lythrodontas forest in Nicosia, Cyprus.

means for energy replenishment including solar panels, bio-harvesting [39], etc.
However, in order for these solutions to succeed effectively, the ratio of energy
replenishment over energy consumption must be encouraging. KSpot+ decreases
energy consumption by minimizing both the size and number of packets, which
increases the network’s lifespan and reduces maintenance costs.

KSpot+ is currently deployed as part of the forest fire monitoring system of the
FireWatch project2 (see Figure 1), sponsored by the Cyprus Research Promotion
foundation and supervised by the Cyprus Department of Forests. The current
network deployed at Lythrodontas forest, which is one of the high risk forest areas
in Cyprus, consists of 20 MemSic IRIS nodes and is scheduled to gradually grow
each year.

Big Ephemeral Events: International events (e.g., FIFA World Cup, World
Expo) usually attract millions of participants during a very limited period of time.

2The FireWatch project, http://firewatch.cs.ucy.ac.cy/

4

Figure 2: KSpot+’s prototype implementation deployment during the event “Researcher’s
Evening” at the Cyprus International Fair in 2009. (Left) Sensor nodes were placed over the
pavilions using helium balloons. (Right) Sink station was connected with a laptop computer that
projected the pavilions with the highest noise level.

The deployment of smart sensor networks (i.e., sensors, actuators, RFID) in build-
ings can contribute to improve the visitor’s experience by providing the means
to easily interact with its surroundings. For example, during these ephemeral
big events, affluence-measuring sensors (e.g., sound, proximity) can form logi-
cal groups in order to build a compound resource that provides a real-time map
of visitors’ arrivals at the different pavilions and places and propose visitors an
ideal tour, so as to maximize their experience and satisfaction. Additionally, if
a crisis situation happens, these compound resources can also help to localize
people to rescue. Furthermore, these deployments can be utilized in conjunction
with smartphone networks in order to generate opportunistic social networks that
form spontaneously according to relationships, which are explicit (e.g., friend-
ship) and/or implicit (e.g., location, energy.)

In this context, we have deployed the KSpot+ framework prototype imple-
mentation during the event “Researcher’s Evening” at the Cyprus International
Fair in 2009. Figure 2 shows two pictures of our deployment. Our objective was
to create an acoustic map of the pavilions participating in the exhibition and di-
rect the visitors towards the most popular ones (i.e., the most noisy). This was
accomplished by forming logical clusters of the sensor nodes at each pavilion and
then measuring the average sound level using the microphone sensor. KSpot+

successfully monitored the pavilions by periodically visualizing the most popular
locations (i.e., Top-3 highest ranked logical groups) every 4s. Additionally, in
order to demonstrate the interoperability of the KSpot+ middleware, all acquired

5

results were also recorded in a local database. Noteworthy was that at the end, the
organizing committee of the event requested the data trace for further analysis.

This work is found upon our previous work in [4], where we have presented
the outline of our network-aware architecture. In this paper, we present a thor-
ough description of the KSpot+ framework, its features as well as a description
of its basic components. KSpot+ features a highly modular design that allows
components to function individually or in cooperation according to the require-
ments of the application, thus allowing application designers to easily integrate
new features into the design as well as to experiment under different settings.
Additionally, KSpot+ provides an extended SQL query syntax and mechanisms
for logical clustering of sensor nodes through attribute-based naming. Finally,
through our experiments we have shown that KSpot+ is resilient in the presence
of failures and scales linearly with the number of sensors in the network.

Our Contributions More specifically, we make the following contributions:

• We present a detailed description of the KSpot+ framework architecture
including insight information on all its components and internal procedures.

• We experimentally validate the efficiency of KSpot+ with an extensive ex-
perimental study that utilizes real sensor readings and real datasets from the
Department of Atmospheric Sciences at the University of Washington, Intel
Research Berkeley and University of California-Berkeley.

• We qualitatively explain the differences and similarities of existing WSN
middleware frameworks compared to the KSpot+ framework. To accom-
plish this, we provide a taxonomy of WSN middleware frameworks along
four different dimensions: power efficiency, topology optimization, work-
load optimization and top-k query support.

The remainder of the paper is organized as follows: Section 2 presents the ar-
chitecture of the KSpot+ framework and Sections 3, 4 and 5 provide a description
of its basic components. In Section 6 we present our experimental methodology
and in Section 7 the results of our evaluation. Finally, Section 8 performs a quali-
tative comparison of related middleware system research works with KSpot+ and
Section 9 concludes our paper.

2. The KSpot+ framework

KSpot+ is a network-aware framework for WSNs built on top of a diverse
set of energy-conscious algorithms. It inserts a profiling layer between the server

6

and the sensor network that discovers structural and workload inefficiencies and
exploits them in order to generate balanced topologies that can be queried in an
energy-efficient manner. It has three basic operations: i) to construct balanced
network topologies; ii) to tune the waking windows of sensor nodes; and iii) to
enable tuple ranking through Top-k queries.

In this section, we provide an overview of the KSpot+ framework, its design
principles and its basic components.

2.1. Design Goals

In order to build a practical system, we have taken into consideration the fol-
lowing desired properties:

• Modularity: Decomposing systems into a number of components that may
be mixed and matched in a variety of configurations ensures a high degree
of openness and usability. Our framework’s architecture design consists
of modular components that operate in an energy efficient manner both in
isolation and in combination with each other as well as with other protocols.

• Energy-Efficiency: Battery-powered WSNs are expected to minimize main-
tenance cost by lasting for large periods of time without requiring battery
replacements [21, 22, 2, 3, 36]. To accomplish this, any software that runs
on a sensor device must be designed to operate in an energy-efficient man-
ner. In the KSpot+ framework, each module is founded on the premise
of energy-conscious algorithms that minimize energy consumption and in-
crease network longevity.

• Distributed and Autonomous Behavior: We focus on fully autonomous and
decentralized behavior of KSpot+ client-side components. More specifi-
cally, we minimize the maintenance of any global state or data structures
at a centralized location and use only local knowledge. In the cases where
global information is necessary for completing an operation it is acquired
using specialized coordinator components. Note that this occurs only at the
initialization of the network topology upon a balancing request or in case of
node failures.

• Scalability: The network sizes of WSNs are expected to grow substantially
in the next few years as the cost for manufacturing sensor devices contin-
uously decreases [1]. Consequently, we consider scalability an extremely
desirable property of our framework as it ensures that the performance of

7

O
p

er
at

in
g

 S
ys

te
m

Tree Balancing Client

WART

Kspot+ Framework

Query Processing
Module

}k
INT

Middle Tier Data TierServer Tier

Query Manager

Coordinator

Top-k API

Query API

S
ch

em
a

C
o

m
m

u
n

ic
at

io
n

Web Database

Applications

Internet

Metadata
Repository

Top-k Processing

Group
Management

Caching

MINT

Data Listener

Workload ClientCoordinator

ETC

Server-side Client-side

Workload Balancing Module

Tree Balancing Module

sink

Figure 3: KSpot+ framework architecture. The KSpot+ client combines 3 components: the tree
balancing module, which balances the sensor network topology, the workload balancing module,
which balances the workload of each sensor node, and the query processing module, which handles
query execution and facilitates Top-k query processing.

the system will maintain acceptable QoS standards regardless of the increas-
ing network size. In our experiments, we show that the KSpot+ framework
is scalable by utilizing a number of datasets that vary from small-scale to
large-scale sensor networks.

• Failure Resilience: WSNs are typically prone to imminent node failures
triggered by temporary power-downs, malfunctions, environmental causes,
etc. Maintaining resilience in such environments is vital for applications
(e.g., fire detection/prediction) that require real-time results.

2.2. KSpot+ Framework Architecture Design

The KSpot+ framework lies between the server-tier and the data-tier as illus-
trated in Figure 3. Applications can post queries to the sensor network through the
server-side query manager using the query API or request a balancing operation

8

(tree balancing and/or workload balancing request) through the respective server-
side coordinator components. Queries are forwarded to the client-side query pro-
cessing module, which in turn decides the best execution plan for the query and
communicates with the schema layer in order to retrieve the actual data residing
on local storage. As soon as the query results are ready, they are forwarded back
to the application through the data server-side listener component. Applications
can then share the data with online databases and web portals.

Balancing requests require global information, which is stored in the meta-
data repository. The Coordinator components recursively forward specialized
messages to the sensor network requesting the local values. In the next step, these
values are propagated in the opposite order until they reach the sink node. The
sink node then calculates the critical path (ψ) and the optimal network branch-
ing factor (β) values and forwards them back to the coordinator components that
proceed with balancing the network topology and each sensor node’s workload
locally.

We now describe in more detail the components of the KSpot+ framework:

• The workload balancing module: (described in detail in Section 3), investi-
gates data reception/transmission inefficiencies that occur from unbalanced
assignment of the query workload amongst sensor nodes. It utilizes the
Workload-Aware Routing Tree (WART) algorithm for the dynamic adapta-
tion of the waking windows locally at each sensor node.

• The tree balancing module: (described in detail in Section 4), identifies
structural inefficiencies in the initial QRT that occur from its ad hoc con-
struction nature. It utilizes the Energy-driven Tree Construction (ETC) al-
gorithm in order to remove these inefficiencies by reconstructing the tree in
a balanced manner, which minimizes data collisions during communication.

• The query manager: is responsible for disseminating queries to the network
and translating the network results into a tuple-format using the data listener
component. It supports an SQL-like query syntax, which supports standard
queries through the query API. Additionally, it extends the traditional SQL
syntax of predominant data-centric middleware systems [22, 41, 33, 42] by
introducing top-k query execution in the form of aggregates through the
top-k query API. More details on the Query Syntax will be presented in
Section 2.4.

• The query processing module: (described in detail in Section 5), is respon-
sible for query execution as well as a number of services including group

9

management (see Section 2.5) and caching. It utilizes the INT algorithm for
the execution of Top-k queries. Additionally, it incorporates a data caching
mechanism that, in cooperation with INT, exploits temporal coherency be-
tween results of consecutive time instances (MINT.)

• The data caching component exploits the temporal coherency in order to
suppress updates that do not change between consecutive time instances.
At each epoch, the query results are stored in main memory before they are
transmitted so that they can be compared with the results of the next epoch.
We have chosen to store the results in main memory instead of flash storage
because it increases the response time performance of the system.

• The group management (described in detail in Section 2.5) component is
responsible for forming clusters of sensors by arranging them in logical
groups. This is accomplished by attribute-based naming of the sensors
based on specific query semantics.

We now present selected features of the KSpot+ framework.

2.3. Modular Design

The KSpot+ framework is composed of loosely-coupled modules that com-
municate with message-passing. In Figure 3, the server-side components com-
municate with their client-side accomplices using different communication mes-
sages (different arrows departing from each server-side component.) The reason
we have not opted for a unified communication mechanism is that this gener-
ates a tightly-coupled system, which would have compromised the modularity
of the system as tightly coupled systems tend to exhibit a number of disadvan-
tages including: i) Decreased Reusability, because dependent modules must be
bundled together in order to be reused or tested; ii) Increased Deployment Ef-
fort, because module bundles will require more time to test and deploy; and iii)
Increased Maintenance, as updates on one module may require re-testing of the
whole bundle. Nevertheless, under a unified communication setting, we could
have performed additional packet-level optimizations that could have decreased
the energy requirements for transmission/reception.

The modular design of the KSpot+ architecture allows application designers
to easily integrate new features into the design as well as experiment under dif-
ferent settings. Furthermore, KSpot+’s modules can function individually or in

10

cooperation3 according to the requirements of the application.

2.4. Query Syntax
The KSpot+ framework supports an SQL-like query syntax, which supports

standard queries through the query API and Top-k queries through the Top-k
API. In particular, the KSpot+ framework utilizes the following query syntax:

SELECT Top k attribute [,aggregate]
FROM sensors

[WHERE filter]
[GROUP BY attribute]
[ORDER BY [attribute|aggregate] [ASC|DESC]]

[SAMPLE PERIOD time (ms)]

The attribute parameter in the SELECT statement refers to all measurements
that can be acquired from the sensorboard as well as variables stored locally at
each sensor node. The attribute parameter in the GROUP BY statement may
additionally refer to a logical group assignment (see Section 2.5.) The aggre-
gate parameter refers to all duplicate-insensitive aggregates supported. Roughly,
these aggregates can be distinguished in: i) distributive aggregates, where records
can be aggregated in-network without compromising correctness (e.g., duplicate-
insensitive (MAX, MIN), duplicate-sensitive (SUM, COUNT)), and ii) holistic
aggregates, where in-network aggregation might compromise the result correct-
ness (e.g., MEDIAN), thus all tuples have to be transmitted to the sink before the
query can be executed. The benefits of the KSpot+ framework are more evident
in the case of single-relation queries with distributive aggregate functions. In con-
trast with other frameworks, we optimize queries with multi-tuple answers. Such
answers can be generated by a GROUP BY clause, or by a non-aggregate query.
Note that for single-tuple answers, such as those generated by an aggregate query
without a GROUP BY clause, there is no notion of a top-k result. Furthermore,
when a Top-k attribute query is executed over the network, we only return the
k-highest results for that attribute, if no ORDER BY clause is used.

2.5. Logical Group Management
The group management component realizes clustering of the sensor nodes by

arranging them into logical groups. This is necessary in the case of Group-By

3When operating in cooperation, the operation of the Tree Balancing Module logically pre-
cedes the operation of the Workload Balancing Module, as the former reconstructs the network
topology which may result in different workload assignments.

11

queries, where grouping may be achieved not only on predefined attributes (e.g.,
nodeid) but also on context-based attributes (e.g., building name, room num-
ber). To facilitate our description, consider an indoor deployment of four sensor
nodes s1−4 in a building with two offices, A and B, such that s1−2 is located in
office A and s3−4 in B. In order to inform each sensor node on its actual loca-
tion (e.g., longitude, latitude) and then derive its logical location (i.e., office A
or B), we could have utilized absolute localization techniques (e.g., Global Posi-
tioning System (GPS)) or relative localization techniques (e.g., RSSI indicators)
and then perform the logical mapping on the server. However, this requires spe-
cialized hardware (e.g., GPS receiver), which may not be always available and
also increases the overall message complexity. To overcome this, the KSpot+ API
supports commands for creating and deleting logical groups that are injected to
the network and processed locally at the sensor nodes.

2.6. Proof of Concept Application

In order to assess the practicality and usability of the proposed KSpot+ frame-
work, we have developed a proof of concept application (KSpot+ POCA) that
demonstrates the full potential of KSpot+ (see Figure 4). KSpot+ POCA compo-
nents are implemented in JAVA (server-side) and in nesC (client-side). We have
selected nesC for the implementation of the client-side components for practical
reasons as it provides a kernel of declarative data acquisition functionalities (i.e.,
SQL query syntax). However, we could have similarly applied our ideas on other
sensor network operating systems (e.g., LiteOS [6]).

3. Workload Balancing Module

The Workload Balancing Module investigates data reception/transmission in-
efficiencies that occur from unbalanced assignment of the query workload amongst
sensor nodes. It utilizes the Workload-aware Routing Tree (WART) algorithm for
the dynamic adaptation of the waking windows of each sensor node. In partic-
ular, the Workload Balancing process consists of three phases: i) construction
phase: where the sink node constructs a new QRT or utilizes an established one
and then queries the network for the total critical path value ψ; ii) dissemination
phase: where the sink node disseminates the critical path value ψ to the network
and each sensor node tunes its waking window accordingly; and iii) adaptation
phase: where each sensor node adapts its waking window according to new work-
load variations.

12

Figure 4: KSpot+’s Graphical User Interface (GUI) allows users to administer the execution of
standard and Top-k Queries through an intuitive and declarative graphical user interface. The
above scenario conducts a Top-3 query over a 14-node sensor network organized in 6 logical
clusters. The Display Panel (on the right) illustrates the three KSpot+-Bullets for the three highest-
ranked sensor clusters.

Construction Phase: The first phase of the WART algorithm starts out by
having each node select one node as its parent. This results in a waiting list similar
to Cougar [41]. To accomplish this task, the parent is notified through an explicit
acknowledgment or becomes aware of the child’s decision by snooping the radio.

In the next step, each sensor profiles the activity of the incoming and outgoing
links and propagates this information to the sink. In particular, each sensor si
executes one round of data acquisition by maintaining one counter for its parent
connection (souti) and one counter per child sj connection (sini,j .) These counters
account for the workload between the respective sensors (i.e., the time required to
propagate the query results between them) and are utilized to identify the critical
path cost in the subsequent epochs. Note that these counters account for more

13

s1

s2 s3

s5 s6 s9

s4

13 30

11 7

Critical Path

s7 s8

42 29

22

40

sink (s0)

Figure 5: Nine sensing devices and the respective workload between them (shown as edges.) The
WART algorithm utilizes this information in order to locally adapt the waking window of each
device using the Critical Path Method.

time than what is required had we assumed a collision-free MAC channel. By
projecting the time costs obtained for each edge to a virtual spanning tree creates
a distributed QRT similar to the one depicted in Figure 5.

The final step is to percolate these local edge costs to the sink by recursively
executing the following in-network function f at each sensor si:

f(si) =

{
0 if si is a leaf,

max∀j∈children(si)(f(sj) + sini,j) otherwise.

The critical path cost is then f(s0) (denoted for brevity as ψ.) Using our working
example of Figure 5, we will end up with the following values : f(s5≤i≤9) = 0,
f(s4) = 4, f(s3) = 29, f(s2) = 11, f(s1) = 59 and ψ = f(s0) = 99.

Dissemination Phase: In this phase, the critical path cost ψ is propagated top-
down, from the sink to the leaf sensors, with a message complexity ofO(n). Each
sensor si locally defines three parameters using ψ that enable it to derive: i) the
time instance during which it should wake up (i.e., wi); ii) the interval during
which it should listen for readings and to transmit results (i.e., τi); and iii) the
workload increase tolerance of the parent of si (i.e., λi) which signifies when the
synchrony of the QRT might be disrupted.

In the first step, a query is aborted when the critical path is larger than the
epoch, which signifies an error in the user query. In the second step the wake up
time instance wi is calculated, such that si has enough time to collect the tuples
from all its children sj . In practice, this is defined by the child of si with the largest

14

workload (i.e., sini,maxchild.) The second step also defines the waking window of τi,
which is the complete window during which si will enable its transceiver. In the
third step, the children of si are notified with the adjusted critical path cost (i.e.,
ψ − soutj .) Furthermore, si also notifies its children sj with the workload increase
tolerance of si (i.e., λi) and a flag which signifies whether these nodes belong to
the critical path. Thus, sj can intelligently schedule its transmissions in cases of
local workload deviations.

Adaptation Phase: The Adaptation Phase adapts the WART QRT in cases
of workload changes. In the first step, the workload indicators of the current
epoch and the previous epoch are calculated. If the workload has changed by
more than a user-defined threshold, we consider this change as significant and
proceed with the adaptation of the routing tree otherwise, the procedure aborts. A
significant deviation has to request the re-construction of the routing tree using the
construction and dissemination phases. For instance, if the workload of s3 changes
from 30 time instances to 35 time instances (see Figure 5) then this will trigger
the re-construction of the WART QRT and this change should be propagated to
all nodes in the network. Although this case is possible, our experimental study
in [3] has shown that it is not frequent. Finally, the algorithm handles the more
common case where the change does not occur on the critical path. In such a case,
if the workload is decreased by x then a sensor locally delays its wake up variable
by x (i.e., to wi+x.) For instance, if the workload of s2 drops from 13 to 11 (thus,
x = 2), then wnew

2 = w2 + x = 46 + 2 = 48. Similar adjustments are performed
in the case where the workload is increased. However, when the change affects
the critical path (e.g., s2’s workload increased from 13 to 32 thus, x = 19 that is
larger than λ2 = 17), this yields the re-construction of the tree as such an increase
might potentially create a new critical path.

Critical path reconstruction rrequency: One important question that arises is
how often to expect changes to the critical path as this might severely degrade
the longevity of the network. In [3], we have observed that queries yielding ap-
proximately the same amount of results (e.g., single-tuple queries or multi-tuple
queries with fixed size) benefit the most from WART’s optimization phase. This
is expected as the critical path value is only calculated at the start of the execution
and continues to be valid until a node or communication failure becomes present.
In the event of a node failure, the results of the path rooted at the failed node are
not transmitted and therefore the critical path is not affected as the parent node of
the failed node will wait for the results for the same amount of time as it would
if the node was active. However, in the case of a communication failure, which
results in the retransmission of the results by the failed sensor node, the efficiency

15

of the network may be affected especially if the failed node lies on the critical
path. This can also lead to data loss if the node misses the waking window of its
parent node. In the case of event-based queries or queries with multi-tuple results
of arbitrary size (e.g., filter queries) the critical path reconstruction frequency is
increased. This happens because the workload incurred on each sensor node may
change rapidly between subsequent epochs. However, even in these cases, the
Workload Balancing Module still manages to conserve energy as can be seen by
the results of [3].

4. Tree Balancing Module

Although the Workload Balancing Module significantly reduces the energy
consumption of the sensors by scheduling communication activities based on the
workload, it still does not take into account the fact that the QRT topology might
be unbalanced. The Tree Balancing Module identifies structural inefficiencies
in the initial QRT that occur from its ad hoc construction nature. It utilizes the
Energy-driven Tree Construction (ETC) algorithm in order to remove these inef-
ficiencies by reconstructing the tree in a balanced manner, which minimizes data
collisions during communication. The ETC algorithm consists of a discovery and
distributed balancing step which are described next.

Discovery Phase: The first phase of the ETC algorithm starts out by having
each node select one node as its parent. During this phase, each node also records
its local depth (i.e., depth(si)) from the sink. Notice that depth(si) can be de-
termined based on a hops parameter that is included inside the tree construction
request message. A node si also maintains a child node list (children) and an
alternate parent list (APL.) The APL list is constructed locally at each sensor
by snooping (i.e., monitoring the radio channel while other nodes transmit and
recording neighboring nodes) and comes at no extra cost. This list is utilized by
the ETC algorithm for parent reassignment during the reconstruction of the QRT,
but it can also be used for selecting alternate parents in cases of failures. The sink
then queries the network for the total number of sensors n and the maximum depth
of the routing tree d. Such a query can be completed with a message complexity
of O(n). When variables n and d are received, the sink calculates, the optimal
branching factor (β = d

√
n.)

Balancing phase: The Balancing Phase of the ETC algorithm involves the
top-down reorganization of the QRT such that this tree becomes near-balanced.
In particular, the sink disseminates the β value to the n nodes using the reverse
acquisition tree. When a node si receives the β value from its parent sp it initiates

16

parent re-assignments for its children. The Balancing Phase is divided into two
steps: i) si’s connection to its newly assigned parent newParent, and ii) the trans-
mission of parent reassignment messages to children nodes, in which the given
nodes are instructed to change their parent. When such a message has arrived, si
obtains the β value and the identifier of its newParent. If newParent has a specific
node identifier then si will attempt to connect to that given node. Notice that if
newParent cannot accommodate the connect request from si then the procedure
has to be repeated until completion or until the alternative parents are exhausted.

Note that we have chosen to do parent reassignments at si, rather than at the
individual child sj , because si can more efficiently eliminate duplicate parent as-
signments (i.e., two arbitrary children of si will both not choose newParent.) If
the number of children is less than β then the procedure halts. In the contrary
case, we have to eliminate |children(si)| − β children from si. Thus, we iterate
through the child list of si and attempt to identify a child sj that has at least one
alternate parent. If an alternative parent can not be determined for node sj then it
is not meaningful to request a change of si’s parent.

Extending the optimal branching factor: ETC assumes that all sensors feature
the same workload and that the workload of a parent sensor is directly proportional
to the number of its child nodes. The rationale behind this assumption is that
the majority of queries typically incur the same workload (i.e., the same number
of tuples) on each sensor node. However, there are queries (e.g., filter queries,
event-based queries) that may impose significantly different workloads on each
sensor node. In order to tackle this problem, we could have easily extended the
definition of the optimal branching factor [3]4 to take into account the workload
of each sensor node rather than the global number of sensor nodes (n) and the
depth (d) of the QRT. One way to accomplish this would be to first execute the
WART algorithm of the Workload Balancing Module (described in Section 3),
which discovers the workload incurred on each sensor node by profiling recent
data acquisition activity and then to execute the ETC algorithm in order to create
a more workload-balanced topology.

Balancing based on network vs. query semantics: Although, we have shown
in our experiments [3] that balancing based on network semantics (i.e., d, n) of-
fers significant energy savings, there are occasions where it may present conflicts
with the optimizations proposed by the Query Processing Module (presented in

4the optimal branching factor takes into account network semantics (e.g., number of child
nodes, depth of the query routing tree, workload of each sensor node.)

17

Section 5) where optimization is achieved by taking into account query-based
semantics. A work that incorporates query-based semantics in the network op-
timization phase is presented in [31] where the authors configure the network
in order to benefit the execution of Group-By queries using the Group-Aware
Network Configuration (GANC) framework. However, one drawback that may
arise is that this approach can limit the efficiency of other types of queries that
could have benefited from the network-based semantics optimization. Since, in
the KSpot+ framework, each module can be enabled or disabled according to the
requirements of the application, we could have easily substituted the Tree Balanc-
ing Module with GANC in order to support query-based semantics in the network
optimization phase. Recall from Section 2.3 that this is also one of the reasons
we have not opted for a unified communication scheme as it would decrease the
modularity of our framework.

5. Query Processing Module

The Query Processing Module is responsible for query execution as well as
a number of services including group management and caching. The procedure
starts by propagating a queryQ to the network. Next, each sensor node acquires its
local sensor readings, merges them with all values acquired from its child nodes
and process them using the INT/MINT algorithms. Finally, each sensor node
recursively transmits its results until they reach the sink node. The INT/MINT
Views algorithms consist of three phases: i) the creation phase, executed during
the first acquisition of readings from the distributed sensors. This phase results in
n distributed views Vi (i ≤ n); ii) the pruning phase, during which each sensor si
locally prunes Vi and generates V ′

i (⊆ Vi.) V ′
i contains only the tuples that might

be located among the final Top-k results; and iii) the update phase, executed
once per epoch, during which si updates its parent node with V ′

i .
Creation phase: In the first step of this phase, each sensor retains the tuples

that satisfy some query Q (e.g., temp>60). We only project the attributes related
to Q prior to storing the result in the in-memory buffer Vi. The next step of the
algorithm merges the tuples that arrive from the children of si into Vi. This yields
an In-Network View similar to Figure 6. If the various values at each node of the
depicted tree do not change across consecutive timestamps, then V can efficiently
provide the answer to the subsequent re-execution of Q. On the contrary, when-
ever we have a deviation, or a change, in a parameter at si, this change has to
cascade all the way up to the sink. A change at all sensors has a worst-case mes-
sage complexity of O(n) for every single timestamp of the epoch duration, thus

18

C:75 D:78 D:75 D:39C:75

C:75
B:74

D:76.5
B:75

s1

s2 s3 s4

s5 s6 s7 s8 s9

A

B

C D

A:42
D:39

C:75

A:42
D:64
B:74.5

Figure 6: Sensor network deployment of 9 sensors assigned in four rooms {A,B,C,D} measuring
temperature. A recursively defined in-network view (V) maintaining the local average temperature
for each room.

we seek to optimize this process through the proposition of the pruning phase.
Pruning phase: The Pruning Phase constructs a hierarchy of views, where

ancestor nodes in the routing hierarchy maintain a superset view of their descen-
dants. Consider a query Q which returns the k rooms with the highest average
temperature. If si could locally define the k-highest answers to Q (at s0), then si
could use this information to prune its local view Vi. However, this is a recursively
defined problem that can only be solved once all tuples percolate up to the sink s0.
In order to avoid this, we utilize a set of descriptors γ which are utilized to bound
above the attributes in V0 and subsequently enable a powerful pruning framework.

Consider the example of Figure 7 (left), where we illustrate the Vi for a given
sensor. Prior to the execution of Q, assume that we established that γ1=“maximum
possible temperature value”=120 and γ2=“number of sensors in each room”=5.
The figure indicates the sum and count for several room numbers. By observing
column 3 (i.e., count), it becomes evident that the sum for the rooms {2, 5, 11, 12, 15}
is a partial value of the sum returned at the sink (since γ2 = 5). On the con-
trary, the tuple of room 6 is already in its final form (i.e., 500.) In this exam-
ple the sum of each row is bounded above using the following formula sum′ =
sum+ (γ2 − count) ∗ γ1 and bounded below using the actual attribute sum. This
creates six lower-bound (lb) and upper-bound (ub) pairs which precisely show the
range of possible values for the sum attribute at the sink. This enables us to prune
(lb, ub) pairs which will not be in the final Top-k result. The intuition behind
our algorithm is to identify the kth highest lower bound (i.e., v lb

k) and then elimi-

19

room

vub

2

5

6

11

12

15

sum

2

5

6

11

12

15

4

4

5

4

3

2

200

270

500

460

290

130

320

390

500

580

530

490

800100

K-Covered

200 400 600

(V’i)
Bound-Set

room countsum sum'

lbvk

Figure 7: (Left) A Materialized In-Network View V i of sensor si. and the lower-bound (lb) and
upper-bound (ub) ranges utilized for generating the k-covered bound set V ′

i . (Right) The (lb,ub)
ranges for the various returned tuples at some arbitrary node and the k-covered bound set V ′

i . We
only propagate a tuple u to the parent of s i, if u ∈ V ′

i .

nate all the tuples that have an upper bound (i.e., vub) below vlbk . Figure 7 (right),
visually depicts this idea.

Update phase: In the previous step, we transformed Vi into a pruned subset
V ′
i . The Update Phase incrementally and recursively updates V ′

i . Let T ′ denote the
V ′
i taken at the last execution of Q. Since our objective is to identify the correct

results at the sink, we utilize an immediate view maintenance mechanism: “As
soon as a new tuple is generated at si, this update is reflected in V ′

i ”. In order to
minimize communication, si only re-transmits V ′

i to its parent, if V ′
i has changed

(temporal coherence filter as in TINA [32].) Additionally, in order to minimize
energy consumption even further, we seek to minimize processing consumption
as well. Therefore, our objective is to construct V ′

i by avoiding the re-execution
of the Pruning Phase.

In particular, any tuple update x with an upper bound (denoted as xub) less
than the vlbk can be ignored. In the opposite case, we add the tuple x to the set
of candidates V ′

i . Now the remaining question is whether v lbk has changed by this
addition of x. If xlb ≤ vlbk is true then vlbk has not changed. Consequently, si only
propagates the update x towards its parent rather than a complete view update. In
the implementation we buffer these updates until all children send their updates
to their parents. If on the contrary vlbk < xlb, then vlbk might have changed. As a
result si has to reconstruct V ′

i and transmit the complete V ′
i to its parent. This re-

construction procedure is necessary to guarantee the correctness of our algorithm.
Note that the reconstruction only happens for |V ′

i | elements rather than all the
elements (i.e., |Vi|.)

20

Deferred view updates: In order to minimize communication even more in
the MINT/INT Views, we could have opted for a deferred view maintenance
mechanism, rather than a immediate one. A deferred mechanism could propa-
gate changes periodically, after a certain number updates or even randomly. In
all cases this would produce probabilistic answers at the sink, as the sink would
not have at its disposal the most up-to-date view. Although these mechanisms are
extremely interesting in the context of WSNs, as they allow us to trade accuracy
versus energy consumption, in KSpot+ we only focus on exact answers.

In-memory buffering: The materialized views and temporary results of all al-
gorithms can either reside in an SRAM-based or a Flash-based buffer. For in-
stance, a typical MICA mote with a 2KB SRAM might need to exploit the 512KB
on-chip flash memory, while Intel’s iMote might easily store these results in the
64KB SRAM. There is a growing trend for more available local storage in sensor
devices [26] and therefore local buffering of results is not a threat to our model.

Impact of the k parameter: Similarly to traditional DQP systems, the value of
k is typically user-defined and is closely related to the application requirements.
Selecting an extremely low value for k (e.g., in a Top-1 query), might cause the
INT/MINT algorithms to omit important results that are vital to the application.
For example, in a forest fire monitoring system where alerts are caused by high
temperature values, there may be two regions that present identical temperature
readings. In our current implementation, the Query Processing module will ran-
domly return one of the extreme values if a Top-1 query has been injected to the
network. However, our approach can be easily adapted to not suppress identical
readings by updating only a minor fraction (2 lines) of the implementation code.
Selecting an extremely large value for k (e.g., in a Top-90% query), might cause
the pruning of the INT/MINT algorithms to rapidly decrease as the in-network
pruning filters will not be able to omit tuples from the k-covered bound-set.

6. Experimental Methodology

In this section, we describe our experimental methodology which involves a
set of trace-driven simulations with real datasets from Intel Research Berkeley and
UC-Berkeley. We shall next describe the sensing device and testbed parameters
used in our experiments.

Datasets: We utilize the following real datasets in our trace-driven experi-
ments in order simulate wireless sensor networks of various sizes.

i. Great Duck Island (GDI14): This is a real dataset from the habitat mon-
itoring project deployed in 2002 on the Great Duck Island, which is 15km off

21

the coast of Maine [36], USA. We utilize readings from the 14 sensors that had
the largest amount of local readings. The GDI dataset includes readings such as:
light, temperature, thermopile, thermistor, humidity and voltage.

ii. Washington State Climate (AtmoMon32): This is a real dataset of atmo-
spheric data collected at 32 sensors in the Washington and Oregon states, by the
Department of Atmospheric Sciences at the University of Washington [9]. More
specifically, each of the 32 sensors maintains the average temperature and wind-
speed on an hourly basis for 208 days between June 2003 and June 2004 (i.e.,
4990 time instances.)

iii. Intel Research Berkeley (Intel54): This is a real dataset that is collected
from 58 sensors deployed at the premises of the Intel Research in Berkeley [16]
between February 28th and April 5th, 2004. The sensors were equipped with
weather board and collected time-stamped topology information along with hu-
midity, temperature, light and voltage values once every 31 seconds. The dataset
includes 2.3 million readings collected from these sensors. We use readings from
the 54 sensors that had the largest amount of local readings.

iv. FireWatch (FW12): This is a real dataset from the FireWatch monitoring
system deployed at the Lythrodontas forest, which is one of the high risk forest
areas in Cyprus, in 2012. We utilize readings from 12 out of 20 sensors as 8
sensors were utilized solely for ensuring multipath routing in case of destroyed
nodes. The FW12 dataset includes readings such as: light, temperature, humidity,
wind, rainfall (%) and voltage.

Sensing device: We use the energy model of Crossbow’s TelosB [26] research
sensor device to validate our ideas. TelosB is an ultra-low power wireless sen-
sor equipped with an 8 MHz MSP430 core, 1MB of external flash storage, and
a 250kbps Chipcon (now Texas Instruments) CC2420 RF Transceiver that con-
sumes 23mA in receive mode (Rx), 19.5mA in transmit mode (Tx), 7.8mA in
active mode (MCU active) with the radio off and 5.1µA in sleep mode. Our per-
formance measure is Energy, in Joules, that is required at each discrete time in-
stance to resolve the query.

Failures: We utilize a failure rate of 20% in our trace-driven experiments in
order to simulate failures. Consequently, certain nodes do not participate (i.e.,
communication or node failure) in a given epoch. In the cases where node fail-
ures affect the critical path this is automatically translated into a chain of delayed
waking windows that force the re-execution of the WART algorithm (workload
balancing module). The required energy is measured in the experiments.

Evaluation Parameters: We emphasize in energy consumption and network
longevity in our experiments. We refer the reader to [2, 3] for additional evaluation

22

parameters such as k, group cardinality, tuple pruning and balancing efficiency
that were used in the evaluation of each individual module.

Our simulation experiments were performed on a Lenovo Thinkpad T61p PC
with an Intel Core 2 Duo CPU running at 2.4GHz and 4.0 GB of RAM. In order
for us to collect realistic results for a large period of time, we collect statistics for
1000 epochs in each experiment. To increase the fidelity of our measurements we
repeated each experiment five times and present the average energy consumption
for each type of plot.

7. Experimental Results

Our experimental section focuses on two aspects. In the first experiment, we
study the effect of incorporating network-awareness into the data acquisition pro-
cess. To accomplish this, we compare two modes of the KSpot+ framework: i)
KSpot+ with only the Query Processing Module enabled, KSpot+ (MINT)5; and ii)
KSpot+ incorporating network-awareness (i.e., all KSpot+ modules are enabled,
KSpot+ (ETC+WART+MINT)). Notice that the latter, firstly utilizes the ETC al-
gorithm to balance the QRT, then utilizes the WART algorithm to optimize the
waking windows of the sensor nodes and finally executes a Top-k query using
the MINT algorithm. The energy overhead related to the tree construction pro-
cess and workload balancing scheme are taken into account in the total energy
consumption of KSpot+ (ETC+WART+MINT).

We have selected the MINT algorithm for both versions as it presents the
higher energy savings in our framework.

Secondly, we evaluate the performance of the full KSpot+ framework in com-
parison with two predominant data acquisition frameworks TinyDB (TAG) and
TINA.

Energy consumption: In the first experiment, we evaluate the energy con-
sumption of KSpot+ (MINT) and KSpot+ (ETC+WART+MINT). We exe-
cute a continuous Top-k query, on the GDI14, AtmoMon32, Intel54 and FW12
datasets and measure the energy consumption for each dataset separately.

In Figure 8 (top-left), we plot the results using the GDI14 dataset. We ob-
serve that the KSpot+ framework using only the MINT algorithm consumes on
average 19±1J. On the other hand, when the KSpot+ framework operates with
all modules, we observe a decrease ≈6% on average energy 18±1J. However, we

5We refer the reader to [2, 3] for the evaluation of each component of KSpot + in isolation

23

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Time Instance

Energy Consumption (Average for all n sensors)
 (Algorithm(s)=All Dataset=GDI14, n=14, network=250Kbps)

 KSpot+ (MINT)
 KSpot+ (ETC+WART+MINT)

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Time Instance

Energy Consumption (Average for all n sensors)
 (Algorithm(s)=All Dataset=AtmoMon32, n=32, network=250Kbps)

 KSpot+ (MINT)
 KSpot+ (ETC+WART+MINT)

 40

 60

 80

 100

 120

 140

 160

 0 200 400 600 800 1000

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Time Instance

Energy Consumption (Average for all n sensors)
 (Algorithm(s)=All Dataset=Intel54, n=54, network=250Kbps)

 KSpot+ (MINT)
 KSpot+ (ETC+WART+MINT)

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Time Instance

Energy Consumption (Average for all n sensors)
 (Algorithm(s)=All Dataset=FW12, n=12, network=250Kbps)

 KSpot+ (MINT)
 KSpot+ (ETC+WART+MINT)

Figure 8: Energy consumption for KSpot+ (MINT) and KSpot+ (ETC+WART+MINT) using the
TelosB energy model.

also observe that the standard deviation has negatively increased which proves
that there are fluctuations in energy consumption caused by the workload and tree
balancing modules. This is expected as under our experimental setting both node
and communication failures occur that trigger the reconstruction and adaptation
phases of the tree and workload balancing modules respectively. This results in
additional packets to be transmitted to the network.

The same observations apply also for the FW12, AtmoMon32 and Intel54
datasets, with the complete KSpot+ framework maintaining a competitive advan-
tage over KSpot+ (MINT). In particular, we observe that the complete KSpot+

framework consumes 16±1J in the FW12 dataset, 105±8J in the AtmoMon32
dataset, and 118±10J in the Intel54 dataset, which translates in 8%, 9% and 15%
decrease in energy consumption respectively. The results for all experiments are
summarized in Table 1.

24

Table 1: Average energy consumption for the TAG, TINA, and KSpot + framework under different
datasets.������������Algor.

Dataset
GDI14 AtmoMon32 Intel54 FW12

TAG 57±3J 234±2J 523±22J 53±1J
TINA 48±2J 183±6J 289±15J 43±1J
INT 34±1J 170±7J 187±08J 31±1J
KSpot+ MINT 19±1J 115±4J 139±06J 17±1J
KSpot+ ETC+WART+MINT 18±1J 105±8J 118±10J 16±1J

In conclusion, the complete KSpot+ framework demonstrates large energy
gains when operating both with isolated components or full-fledged. It is im-
portant to note that the query processing module demonstrates much larger gains
(in the order of Joules) compared to the other two modules (in the order of milli-
Joules) of the KSpot+ framework. This shows that in-network pruning combined
with exploiting temporal coherence can be of higher benefit in cases where appli-
cations require monitoring of the k most important events.

Network lifetime: In the second experiment, we evaluate the network lifetime.
We define network lifetime, similar to [37, 2, 3], as the time instance t′ at which
Energy(t′) = 0. This definition, adopts a universal perspective of the sensor net-
work (i.e., measures the energy depletion across the whole spectrum of participat-
ing sensors) as opposed to existential energy depletion metrics (i.e., measure when
the energy is depleted on a single node) utilized in other works [32, 31]. This is
because we are particularly interested in decreasing the overall energy consump-
tion of the sensor network and not a single node. Note that this applies only to the
case where sensors operate using batteries. Double batteries (AA) used in many
current sensor designs (including the TelosB sensor) operate at 3V voltage and
supply a current of 2500 mAh (milliAmpere per hour.) Assuming similar to [36],
that only 2200mAh is available and that all current is used for communication, we
can calculate that AA batteries offer 23, 760J (2200mAh× 60min× 60s× 3V .)
We terminate this iteration when the termination condition is satisfied.

Figure 9 illustrates the average energy status of the sensor network, at each
epoch, during the execution of a query using the GDI14 dataset. We notice that
the available energy of sensors under TAG is consumed faster than all algorithms,
leading to a lifetime of just 5793 epochs (i.e., 193 minutes). TINA ranks fourth by
offering 6949 epochs (i.e., 231 minutes). The KSpot+ framework with only the
INT algorithm enabled ranks third with 9,768 epochs (i.e., 325 minutes). Next, the

25

 0

 5000

 10000

 15000

 20000

 25000

 30000

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Epoch Number

Network Lifetime (Average energy consumption for all n sensors)
 (Algorithm(s)=All Dataset=GDI14, n=14, network=250Kbps)

5793 6949 9768 16965 18371

 TAG
 TINA

 KSpot+ (INT)
 KSpot+ (MINT)

 KSpot+ (ETC+WART+MINT)

Figure 9: Network lifetime for all algorithms.

KSpot+ framework with only the MINT algorithm consumes its available energy
budget far later at epoch 16,965 (i.e., 565 minutes). Finally, the full KSpot+

framework, which includes all modules enabled, ranks first at epoch 18,371 (i.e.,
612 minutes), and this is translated into a ≈317% increase of the network lifetime
compared to TAG.

8. Related Work

Traditional middleware frameworks such as the Common Object Request Bro-
ker Architecture (CORBA), Java service oriented architecture (JINI) are consid-
ered heavyweight in terms of processor and memory requirements, which renders
them highly inefficient for WSN deployments. In this section, we present mid-
dleware frameworks tailored specifically for WSNs that perform data acquisition
operations and are thus closely related to the proposed KSpot+ framework. More
specifically, we classify these middleware frameworks according to their approach
into three categories: Data-centric, Application-centric and Publish subscribe. We
then perform a qualitative comparison between KSpot+ and the presented mid-
dleware approaches across 4 different dimensions: Energy Awareness, Workload
Optimization, Topology Optimization and Top-k support in order to highlight the
benefits of utilizing the KSpot+ framework. The results of our analysis are sum-
marized in Table 2.

26

Data-centric Middleware Frameworks: are middleware frameworks closely
related to KSpot+ that view the network as a virtual relational database and inject
query messages, which are then processed locally at each sensor node.

Cougar [41], is one of the first data-centric approaches for wireless sensor
networks. Each sensor node acts as a database that stores the node’s measure-
ments locally and the network acts as a distributed database. In Cougar, queries as
well as management operations are translated to query messages, which are then
injected to the network. Similar to KSpot+, Cougar [41], employs a centralized
optimizer, which maintains status information about the network in order to coor-
dinate sensor nodes in an energy-efficient manner. However, in Cougar, this cen-
tralized approach requires a massive amount of messages to be transmitted back
and forth to the sink station thus increasing energy consumption. Furthermore,
in [3] we have shown that node and communication failures severely hamper the
efficiency of this coordination scheme as they cause sensor nodes, especially the
ones in higher levels, to stay in reception mode longer than required.

TinyDB [22], is one of the most popular data acquisition frameworks devel-
oped for TinyOS. Like Cougar, it is a data-centric middleware framework that
supports SQL-syntax queries over the sensor network. Additionally, TinyDB sup-
ports a number of different query sets including historic, event-based and lifetime
queries. TinyDB’s power-aware optimizer employs a cost-based mechanism in
order to choose the most energy-efficient query execution plan, which may in-
volve prioritizing data delivery, adapting sampling rates and minimizing power
consumption. This often enforces a uniform waking window for all sensor nodes
depending on the depth of the QRT, which in the majority of cases it is clearly an
overestimate. The rationale behind this over-estimation is to offset the limitations
in the quality of the underlying clock synchronization algorithms of the operat-
ing system but in reality it is too coarse [2]. TinyDB employs Tiny Aggregation
(TAG) [21], for energy efficient in-network aggregation of sensor results. KSpot+

extends this in-network aggregation scheme by enabling support for advanced
query semantics (e.g., top-k, group-by) that further minimize energy consump-
tion by reducing the size and number of packets transmitted to the network.

Temporal coherency-aware in-Network Aggregation (TINA) [32], works on
top of existing in-network aggregation like TAG and Cougar, and similarly to
the Query Processing Module, introduces a temporal coherency filter that mini-
mizes both the size and number of transmitted packets. Additionally, it influences
the construction of the QRT by incorporating query-based semantics using the
Group-aware Network Configuration (GANC) [31] component. TINA achieves
significant energy savings while maintaining specified quality of data. The MINT

27

Table 2: Classification and comparison of middleware approaches for WSNs
Middleware Key Features Energy- Workload Topology Top-k

approach aware opt. opt. support

Data-centric
TinyDB [22] SQL syntax, lifetime/event-based queries, Semantic routing trees Y Y N N
Cougar [41] SQL syntax, Virtual relational database, centralized optimizer Y Y N N
TINA [32] temporal coherence filters, group aware network configuration Y N Y N

DsWare [42] SQL syntax, real-time semantics, event-detection Y N N N
SNEE [11] Rich and expressive language, workload scheduling Y Y N N
SINA [33] Virtual spreadsheet db, Attribute-based naming, Hierar. Clust. Y N N N
KSpot+ SQL syntax, in-network aggregation, advanced query semantics Y Y Y Y

Application-driven
Milan [13] topology adaptation Y N Y N

MidFusion [15] information fusion, sensor agents Y N N N

Publish-Subscribe
Mires [34] aggregation service, high-level interfaces Y N N N

AWARE [24] sensor network & UAV coordination Y Y N N

algorithm of the KSpot+ Query Processing module utilizes a temporal coherence
filter like TINA but also incorporates in-network pruning, which introduces addi-
tional energy savings.

Sensor Information Networking Architecture (SINA) [33], provides a set of
programming abstractions that enable application designers to view the network
as a collection of distributed objects. SINA enables application designers to eas-
ily query the network (either a single sensor or a group of them) using an ex-
tended SQL syntax (SQLT) that incorporates attribute-based naming in the fil-
tering process. Additionally, the architecture provides a set of configuration and
communication primitives that enable scalable and energy-efficient organization
and query-processing. However, in achieving energy-efficient topologies, SINA
may sacrifice the results of some sensors to avoid data collisions. This may result
in the production of inaccurate results at the sink node thus it is not applicable for
data sensitive applications.

The Sensor NEtwork Engine (SNEE) [11] employs a query optimizer that re-
ceives metadata information about the available resources (e.g., memory, energy),
the WSN topology and also predictive cost models. These are then used for com-
puting the worst-case upper-bounds for the output size and time taken for opera-
tions. SNEE combines a rich, expressive query language, named SNEEQL, which
provides extensive support on the JOIN operators incorporating techniques found
on classical DQP architectures. Unlike KSpot+, the proposed query language does
not directly address Top-k queries although we assume that they can be incorpo-
rated as an aggregate function. Furthermore, SNEE supports workload balancing
by scheduling different workloads to different sites in the network thus effectively
reducing the energy. However, SNEE assumes that the underlying infrastructure

28

employs an efficient protocol for self-organization of the topology thus neglecting
to investigate the effects of an unbalanced topology. KSpot+ addresses the latter
with the aid of the Tree Balancing Module.

The Data services middleWare (DsWare) [42], provides data abstractions to
applications in order to improve the performance of real-time execution and re-
duce the communication cost. It inserts a layer between the applications and the
sensor network, which is composed of server and sensor-side components. Like
KSpot+, the server-side components store meta-data about the network and addi-
tionally handle all coordination activities and provide mechanisms for prediction.
The sensor-side components manage the state of the sensor nodes and provide a
filtering mechanism that provides approximate instead of exact values in order to
decrease communication overhead. In KSpot+, we minimize the overall energy
consumption of the network without sacrificing the results of sensor nodes.

Application-centric Middleware Frameworks: The Middleware Linking Ap-
plications and Networks (Milan) [13] consists of a high level application inter-
face that enables application designers to specify their QoS requirements inside
the sensor network application code. Similarly to KSpot+, Milan’s architecture
extends to the network protocol stack thus allowing the middleware to perform
power control on the communication medium as well as topology changes accord-
ing to heuristics. However, unlike KSpot+, Milan does not consider the workload
incurred on each sensor node, which may result in serious data reception ineffi-
ciencies.

The MidFusion [15] is a middleware architecture that aims to facilitate infor-
mation fusion in sensor networks. MidFusion assumes that a routing strategy is
provided by the operating system of the sensor network and that failures in the
network can only occur due to communication interference. Therefore, unlike
KSpot+ it does not consider data transmission/reception inefficiencies that occur
because of unbalanced routing structures or uneven workload distributed amongst
sensor nodes. Additionally, MidFusion may omit sensor nodes from the data ac-
quisition process because of the QoS requirements of the application, which may
lead to inaccurate results.

Publish-subscribe Middleware Frameworks: The Aware [24] middleware plat-
form provides components to enable the cooperation between fixed and mobile
sensor nodes in addition to Unmanned Aerial Vehicles (UAVs.) It is based on the
publish/subscribe paradigm where the flow of information is coordinated through
data channels. Each device publishes its capabilities (i.e., data channels) and at-
tributes to a centralized registry where other devices can subscribe to and receive
feeds. Aware supports packet-level optimizations that focus on content rather than

29

address; the network acts as a global filtering mechanism, minimizing in this way
the communication overheads.

Mires [34] is a publish/subscribe middleware system built on top of TinyOS. It
encapsulates the low-level generic interfaces of the operating system and provides
high-level services to the applications. In addition to the publish/subscribe layer,
Mires incorporates a routing module that facilitates multi-hop communication.
Although, both Aware and Mires support a number of packet-level optimizations
that can greatly decrease the number of communication packets, additional energy
savings can be achieved by optimizing the network topology.

In summary, the majority of presented middleware approaches employ mecha-
nisms for reducing the overall energy consumption of the network thus increasing
the longevity of a WSN as shown in Table 2. However, they neglect the impor-
tant parameter of constructing an energy efficient topology and operate on top of
the initial ad hoc query routing tree. Additionally, most approaches often assume
a fixed workload distributed uniformly on all sensor nodes. Consequently, it is
not clear how efficient they will operate under a variable workload, which occurs
under the following circumstances: i) from a non-balanced topology, where some
nodes have many children and thus require more time to collect the results from
their dependents; and ii) from multi-tuple answers, which are generated because
some nodes return more tuples than other nodes (e.g., because of the query pred-
icate.) Furthermore, none of the approaches support top-k queries, which can
significantly decrease the overall number and size of transmitted packets. Finally,
few of the proposed middleware approaches have been implemented and tested in
real environments. Like all presented approaches, the KSpot+ middleware frame-
work focuses on energy efficiency but additionally employs mechanisms that gen-
erate a more efficient topology as well as provide support for top-k queries.

9. Conclusions

Current data-centric frameworks for WSNs suffer from data reception/transmission
inefficiencies because they operate on the presumption that the underlying net-
work topology is efficient. This paper advocates an alternative framework de-
sign that looks upon the network characteristics as well as the intrinsic properties
of the data dissemination/acquisition process. In this context, three novel tech-
niques were developed with opportunities of applications that go beyond the cur-
rent problem settings (e.g., people-centric sensing [28, 5], smartphone networks).
Through our experimental evaluation, we have shown that incorporating network-
awareness can provide significant energy reductions and increase the longevity of

30

the wireless sensor network.
The KSpot+ framework presented in this paper assumes that the routing topol-

ogy is stationary. However this is not the case in mobile environments such as
Mobile Sensor Networks (MSNs) and Vehicular Ad hoc Networks (VANETs). In
the future, we plan extend KSpot+ to support such mobile environments. Further-
more, since the operation of MSNs is severely hampered by the fact that failures
are omnipresent, fault-tolerance schemes become of prime importance. In these
settings, data acquisition needs to be succeeded by efficient in-network storage
(e.g., [18]), such that these events can later be retrieved by the user. We plan to
extend KSpot+ with fault tolerance mechanisms that will ensure the continuous
operation of data acquisition even in these harsh environments.

Acknowledgements

This work was supported in part by the Cyprus Research Promotion foundation
under Project FireWatch (#0609-BIE/09), the Open University of Cyprus un-
der the Project SenseView, the University of Cyprus under the project SmartLab
and the second author’s Startup Grant, the European Commission under Projects
CONET(#FP7-224053), mPower (#034707) and MiraculousLife (#FP7-ICT-2013-
10), and the US National Science Foundation under Projects S-CITI (#ANI-0325353),
AQSIOS (#IIS-0534531) and Astroshelf (#OIA-1028162). Additionally, we would
like to thank Joe Polastre (UC Berkeley) for the Great Duck Island data trace and
Kostas Papageorgiou (Cyprus Department of Forests) for providing the FireWatch
dataset.

References

[1] I.F. Akyildiz, R. Sivakumar, E. Ekici, J. Cavalcante de Oliveira, J. McNair,
“NETWORKING 2007. Ad Hoc and sensor networks, Wireless Networks,
Next Generation Internet”, In Proceedings of the 6th International IFIP-TC6
Networking Conference, Atlanta, GA, USA, May 14-18, Vol.4479, ISBN
978-3-540-72605-0, 2007.

[2] P. Andreou, D. Zeinalipour-Yazti, P.K. Chrysanthis, G. Samaras, “Power
Efficiency through Tuple Ranking in Wireless Sensor Network Monitoring”,
Distributed and Parallel Databases Journal, Vol.29, No.1-2, pp.113-150,
2011.

31

[3] P. Andreou, D. Zeinalipour-Yazti, A. Pamboris, P.K. Chrysanthis, G. Sama-
ras, “Optimized Query Routing Trees for Wireless Sensor Networks”, In
Information Systems Journal, Volume 36, Issue 2, pp.267-291, April, 2011.

[4] P. Andreou, D. Zeinalipour-Yazti, G. Samaras, P.K. Chrysanthis, “Towards
a Network-aware Middleware for Wireless Sensor Networks”, The 8th In-
ternational Workshop on Data Management for Sensor Networks, Seattle,
WA, USA, August 29, 2011.

[5] A.T. Campbell, S.B. Eisenman, N.D. Lane, E.Miluzzo, R.A. Peterson, H.
Lu, X. Zheng, M. Musolesi, K. Fodor, G-S. Ahn, “The Rise of People-
Centric Sensing”, In IEEE Internet Computing: Mesh Networking, pp.
30-39, July/August, 2008.

[6] Q. Cao, T. Abdelzaher, J. Stankovic, T. He, “The LiteOS Operating System:
Towards Unix-Like Abstractions for Wireless Sensor Networks”, In Pro-
ceedings of the 7th international conference on Information processing in
sensor networks (IPSN’08), St. Louis, Missouri, April 22-24, USA, pp.233-
244, 2008.

[7] C-M. Chao, T-Y. Hsiao, “Design of structure-free and energy-balanced data
aggregation in wireless sensor networks”, Journal of Network and Computer
Applications (JNCA’14), January, Vol.37, pp. 229-239, 2014.

[8] O. Diallo, J.J.P.C. Rodrigues, M. Sene, “Real-time data management on
wireless sensor networks: A survey”, Journal of Network and Computer
Applications (JNCA’12), July, Vol.35, No.3, pp. 1013-1021, 2012.

[9] Earth Climate and Weather, University of Washington, http://www-
k12.atmos.washington.edu/k12/grayskies/

[10] R. Fagin, “Combining Fuzzy Information from Multiple Systems”, In Jour-
nal of Computer and System Sciences, Montreal, Canada, February, Vol.58,
No.1, pp.83-99, 1999.

[11] I. Galpin, C.Y.A. Brenninkmeijer, F. Jabeen, A.A.A. Fernandes, N.W. Pa-
ton., “An Architecture for Query Optimization in Sensor Networks”, In
Proceedings of the IEEE 24th International Conference on Data Engineer-
ing (ICDE’08), Cancun, Mexico, April 7-12, pp.1439-1441, 2008.

32

[12] G. Gupta, M. Misra, K. Garg, “Energy and Trust Aware Mobile Agent Mi-
gration Protocol for Data Aggregation in Wireless Sensor Networks”, Jour-
nal of Network and Computer Applications (JNCA’14), February, In Press,
2014.

[13] W.B. Heinzelman, A.L. Murphy, H.S. Carvalho, M.A. Perillo, “Middleware
to support sensor network applications”, In IEEE Network, Vol. 18, Is. 1,
pp.6-14, Jan/Feb, 2004.

[14] A. Hitha, K. Mohan, S. Behrooz, “MidFusion: An adaptive middleware for
information fusion in sensor network applications”, In Information Fusion,
Special Issue on Distributed Sensor Networks, Vol.9, Is.3, pp.332-343, July,
2008.

[15] Intel Lab Data, http://db.csail.mit.edu/labdata/labdata.html

[16] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, M. Turon,
“Health Monitoring of Civil Infrastructures using Wireless Sensor Net-
works”, In Proceedings of the 6th International Conference on Information
Processing in Sensor Networks (IPSN’07), Cambridge, MA, USA, April,
ACM Press, pp.254-263, 2007.

[17] W-H Liao, H-C Yang, “A power-saving data storage scheme for wireless sen-
sor networks”, Journal of Network and Computer Applications (JNCA’12),
July, Vol.35, No.2, pp. 818-825, 2012.

[18] K. Lorincz, B. Chen, G.W. Challen, A.R. Chowdhury, S. Patel, P. Bonato, M.
Welsh, “Mercury: A Wearable Sensor Network Platform for High-fidelity
Motion Analysis”, Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems (SenSys’09), November, Berkeley, CA, 2009.

[19] H.V. Luu, X. Tang, “An efficient algorithm for scheduling sensor data collec-
tion through multi-path routing structures”, Journal of Network and Com-
puter Applications (JNCA’14), February, Vol.38, pp. 150-162, 2014.

[20] S.R. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, “TAG: a Tiny AG-
gregation Service for Ad-Hoc Sensor Networks”, Proceedings of the 5th
symposium on Operating Systems Design and Implementation (OSDI’02) ,
Vol.36, No. SI, pp.131-146, 2002.

33

[21] S.R. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, “The Design of
an Acquisitional Query Processor for Sensor Networks”, Proceedings of
the International Conference on Management Of Data (SIGMOD’03), San
Diego, CA, USA, June 9-12, pp.491-502, 2003.

[22] MemSic Technology Inc., http://www.memsic.com/

[23] A. Ollero, M. Bernard, M.L. Civita, L. van Hoesel, P.J. Marron, J. Lep-
ley, E. de Andres, “AWARE: Platform for Autonomous self-deploying and
operation of Wireless sensor-actuator networks cooperating with unmanned
AeRial vehiclEs”, In Proceedings of the IEEE International Workshop on
Safety, Security and Rescue Robotics (SSRR 2007), Rome, Italy, September
27-29, pp.1-6, 2007.

[24] J. Paradiso, M. Feldmeier, “Ultra-Low-Cost Wireless Motion Sensors for
Musical Interaction with Very Large Groups” In Proceedings of the 2002
International Computer Music Conference, Gothenburg, Sweden, Septem-
ber 16-21, pp.83-87, 2002.

[25] J. Polastre, R. Szewczyk, D.E. Culler, “TELOS: Enabling Ultra-low Power
Wireless Research”, Proceedings of the 4th international symposium on
Information processing in sensor networks (IPSN’05), Los Angeles, CA,
USA, April 25-27, pp. 364-369, 2005.

[26] M. Roantree, J. Shi, P. Cappellari, M.F. O’Connor, M. Whelah, N. Moyna,
“Data Transformation and Query Management in Personal Health Sensor
Networks”, Journal of Network and Computer Applications (JNCA’12),
July, Vol.35, No.4, pp. 384-403, 2012.

[27] I.Rose, M. Welsh, “Mapping the Urban Wireless Landscape with Argos”,
Proceedings of the 8th ACM Conference on Embedded Networked Sensor
Systems (SenSys10), Zurich, Switzerland, November 35, 2010.

[28] C. Sadler, P. Zhang, M. Martonosi, S. Lyon, “Hardware Design Experiences
in ZebraNet”, Proceedings of the 2nd international conference on Embed-
ded networked sensor systems (SenSys’04), Baltimore, Maryland, USA,
November 3-5, pp.227-238, 2004.

[29] SELEX Galileo Inc., http://www.selex-sas.com/

34

[30] M.A. Sharaf, J. Beaver, A. Labrinidis, P.K. Chrysanthis, “Balancing Energy
Efficiency and Quality of Aggregate Data in Sensor Networks”, International
Journal on Very Large Data Bases (VLDBJ’04), December, Vol.13, No.4,
pp.384-403, 2004.

[31] M.A. Sharaf, J. Beaver, A. Labrinidis, P.K. Chrysanthis, “TiNA: a scheme
for temporal coherency-aware in-network aggregation”, In Proceedings of
the 3rd ACM international workshop on Data engineering for wireless and
mobile access (MobiDe’03), San Diego, CA, USA, September 19, pp.69-76,
2003.

[32] C-C. Shen, C. Srisathapornphat C., C. Jaikaeo, “Sensor information net-
working architecture and applications”, In IEEE Personal Communications,
Vol.8, No.5, pp.52-59, August, 2001.

[33] E. Souto, G. Guimarães, G. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz, J.
Kelner “Mires: a publish/subscribe middleware for sensor networks”, In
Personal Ubiquitous Computing, Vol.10, No.1, December, 2005.

[34] I. Stojmenovic, “Handbook of Sensor Networks: Algorithms and Architec-
tures”, Wiley, ISBN: 978-0-471-68472-5, November, 2005.

[35] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, D. Culler, “An Anal-
ysis of a Large Scale Habitat Monitoring Application”, In Proceedings of
the 2nd international conference on Embedded networked sensor systems
(SenSys’04), Baltimore, Maryland, USA, November 3-5, pp.214-226, 2004.

[36] H. Thomas, S. Yi, H.D. Sherali, “Rate allocation in Wireless Sensor Net-
works with Network Lifetime Requirement”, In Proceedings of the 5th ACM
international symposium on Mobile ad hoc networking and computing (Mo-
biHoc’04), Tokyo, Japan, May 24-26, pp.67-77, 2004.

[37] D. Virmani, T. Sharma, R. Sharma, “Adaptive Energy Aware Data Aggrega-
tion Tree for Wireless Sensor Networks”, In International Journal of Hybrid
Information Technology (IJHIT’13), Vol. 6, No. 1, January, 2013.

[38] Voltree Power Inc., http://www.voltreepower.com/

[39] D.B. Yang, H.H. Gonzalez-Ba, L.J. Guibas, “Counting People in Crowds
with a Real-Time Network of Simple Image Sensors”, In Proceedings of the

35

Ninth IEEE International Conference on Computer Vision (ICCV’03), Nice,
France, October 13-16, Vol.1, 2003.

[40] Y. Yao, J.E. Gehrke, “The cougar approach to in-network query processing
in sensor networks”, In ACM SIGMOD Record (SIGMOD’02), September,
Vol.31, No.3, pp.9-18, 2002. Vol.12, No.3, pp.493-506, 2004.

[41] X. Yu, K. Niyogi, S. Mehrotra, N. Venkatasubramanian, “Adaptive Mid-
dleware for Distributed Sensor Environments”, In IEEE Distributed Sys-
tems Online, Vol.4, No.5, May 2003. ibitemtja D. Zeinalipour-Yazti, S.
Lin, D. Gunopulos, “Distributed Spatio-Temporal Similarity Search”, In
ACM international conference on Information and knowledge management
(CIKM’06), Arlington, VA, USA, November 6-11, pp.14-23, 2006.

36

