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Abstract— The emerging Peer-to-Peer (P2P) model has becometheir decentralized nature allows easy additions, updates
a very powerful and attractive paradigm for developing Internet-  creased storage, and offers fault-tolerant propertiesitiir the
scale systems for sharing resources, including files and doc ;56 of replication and caching. In addition, recent effbesed

ments. The distributed nature of these systems, where nodes - - L
are typically located across different networks and domais, on caching [22] and other heuristics [S0] have significaitly

inherently hinders the efficient retrieval of information. In this Proved the query routing problem in unstructured P2P system
paper we consider the effects of topologically-aware oveay as well. An important problem that such systems have nat full

construction techniques on efficient peer-to-peer keywordearch  considered, is how the heterogeneity of the underlyingas¥r
algorithms. We present thepFusion (Peer Fusion) architecture ..+t re affects the performance of the information retie

that aims to efficiently integrate heterogeneous informatn that . -
is geographically scattered on peers of different networksOur algorithms implemented on top of these networks. The P2P

approach builds on work in unstructured peer-to-peer systens, infrastructure can encompass resources with differerdga®
and uses only local knowledge. Our empirical results, usinghe ing and communication capabilities, located across dffer
pFusion middleware architecture and datasets from AKAMAI,  geographical areas. As a result, retrieving documentssur
NLANR and TREC, show that the architecture we propose is  |nternet-scaleenvironments is subject to greater variations due
both efficient and practical. - S . .
to unpredictable communication latencies, excessiveureso
Index Terms—Information Retrieval, Peer-to-Peer, Overlay consumption and changing resource availability.
Construction Algorithms. In this paper we focus on techniques tstributed keyword
search that is, we aim to find the documents that contain a
given set of query terms when the collection of documents is
distributed. Formally, assuming thét, is a set of documents
The worldwide infrastructure of computers and network#at are stored on peer and each documetitis characterized
creates exciting opportunities for collecting vast ameuolt by a set of keywords, the result to a query(itself as a
data and for sharing computers and resources on an unpra®golean expression of keywords), should be #mswer set
dented scale. In the last few years, the emerging Peer-{¢d, u)|u is a peer and q- s(d) andd € D, }, wheres(d)
Peer (P2P) model has become a very powerful and attractigethe (unordered) set of keywords ih To motivate our
paradigm for developing Internet-scale file systems [3§],[ description we consider two popular applicatiofgrsonal
[41] and sharing resources (i.e., CPU cycles, memory, géoravideo SharingandCitizen Journalismboth of which currently
space, network bandwidth) over large scale geographieabar support keyword searches over centralized infrastrusture
The basic idea is that an overlay network of nodes (peers)vig explain how these services could optimize their opematio
constructed on top of heterogeneous operating systems &n@éugh the deployment of topologically-aware P2P network
networks. Overlays are flexible and deployable approaches
that allow users to perform distributed operations withoWersonal Video Sharing: Web sites, such as
modifying the underlying physical network. Youtube.com [51] and Yahoo Video [49], allow users
The first wave of P2P systems implementaustructured to upload search browse and view on-demandhe video
P2P overlays in which no global structure or knowledgelips of other users through a keyword-based search intrfa
is maintained. To search for data or resources, messagegh systems typically exploit a centralized storage and
are sent over multiple hops from one peer to another witbtrieval infrastructure which has a number of disadvaetag
each peer responding to queries for information it has dtorand limitations: i) the service can easily become a bottlkne
locally. StructuredP2P overlays [34], [35], [41] implement aduring periods of high demand and is also a single point
distributed hash table data structure in which every data it of failure; ii) the infrastructure is expensive and reqgire
can be located within a small number of hops, at the expensgensive administration and iii) the content can be cestkor
of keeping some state information locally at the nodes.  On the contrary, we model such a service on the premise of
Unstructured P2P systems [6], [9], [10], [50], [54] are veran unstructured P2P system, where each user stores locally
effective infrastructures to share and store documentsiuse its own video clips and performs theearch and retrieval

functions through other participating users in a Gnutéle-
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to more easily retrieve local or regional content. For insta
users in Italy might often be interested in local or regional
news. In these cases focalizing on content in the ".it" domai
might unveil more relevant and interesting content.

In this paper we present the architecture of an Internet-
scale middleware that can be used for efficient contentebase
search and retrieval in a variety of contexts. Our architect
pFusion is designed to make keyword search efficient in
unstructured P2P networks that are geographically diverse
6@ Although the necessity of topologically-aware overlays ha

been addressed in the context of structured overlays [8], [3
[48], [56], content-based retrieval in such systems is aemor
Fig. 1. A peer in Riverside, CA (USA) that is connected to fitieen peers. challenging task [9], [14].

e ot o e e oy st We consider unstructured P2P networks because they offer a
unpredictable communication latencies, excessive resotmnsumption and number of important advantages: (i) Unstructured netwarks
changing resource availability in inter-domain routing. appropriate for content-based retrieval (e.g. keywordchess)

as opposed to object identifiers utilized in structured -over

lays [3], [10], [11], [43], [54]. (ii) An unstructured netwhk
when the network connections among tiientsare arbitrary, imposes very small demands on individual nodes, as it allows
due to unpredictable communication latencies, excessiygdes to join or leave the network without significantly
resource consumption and changing resource availabilfjfecting the system performance. (iii) Finally unstruet
in inter-domain routing. Thus, we seek to optimize thfetworks can easily accommodate nodes of varying power.
overlay by establishing connections between peers basgshsequently they scale into very large sizes and they offer
on the criterion ofnetwork proximity In particular, peers more robust performance in the presence of node failures and
minimize the network distance from their neighboring nodesnnection unreliability.
by establishing connections to nodes that belong to the sameinstructured P2P systems have been utilized in a number of
domain. For example, a node in the Rochester NY (USAje-sharing systems, such as Gnutella [15], Napster [26] an
subdomain of the RoadRunner ISFoghester. rr.com, Morpheus [30]. Although the US Supreme Court had ruled
tries to establish overlay connections with other nodes gh June 26, 2005, that companies enabling such file-sharing
this same domain. In Section VII, we will show that suclystems can be held liable for the widespread copyright
a construction provides tremendous reductions in resouiagringement of their users, it is important to point out ttha
consumption and offers an improved user experience. N@k® P2P technology is not illegal in its own respect. On the
that both of these characteristics are essential in a vid@@mrary, P2P architectures have been the enabling teamol
sharing context where humongous amounts of data ajehind several legitimate Internet-Scale services, dinly
communicated over a public infrastructure. the popular Internet telephony service Skype [39], the film

content distribution network by the entertainment giantivéa
Citizen Journalism: We are all witnessing the rise in abros. [47], and several other services. Thus, P2P servianes h
new form of journalism, where non-journalist have an active viable prospect, given that these systems are utilized in a
role in collecting, analyzing and generating newswire Haségal manner.
on their personal rules of fairness and objectivity, often This paper builds on our previous work in [55], in which we
also referred to a<Citizen Journalism[27]. The website evaluate various content-based search and retrievalitger
voiceofsandiego.conestablishes half of its content from itsover popular types of overlay networks. In this paper we pro-
contributing authors [27] and this new way of performingose an integrated architecture that combines two major com
journalism has profound implications on the future of newsonents to efficiently construct and search an overlay rmitwo
media. Content in such applications is currently commugita The Distributed Domain Nameorder protocol, which is an
to users through centralized Web sites, which suffer froen tlefficient distributed technique for constructing topotdiy-
same disadvantages as the P2P video sharing applicatéyn: thware overlay networks, and theelligent Search Mechanism
require expensive infrastructures and administration gesily which is an efficient distributed technique for keyword quer
become a bottleneck during periods of high demand and thgiting. We perform an extensive experimental evaluation
postings can be censored by the site owners. Additionally, iising ourpFusion architecture. Our objective is timprove
these applications the update frequency is significaniiyr hi the latency, while maintaining the accuracy of the results
as authors are continuously adding new postings. Theref@ar results show that the use of topologically-aware oysrla
crawler-based meta-services, such as Google News, haveninimizes network delays while maintaining high recallesat
continuously crawl the given resources. Finally, it alsificlilt  and low numbers of messages. To evaluate the impact of the
to organize the information into regional or local news i€t overlay we construct realistic P2P networks based on node
underlying data does not contain this information. distributions from the Gnutella network [15] and end-taden

Using a topologically-aware P2P system, besides of ovéatency information from the Akamai CDN (Content Distribu-

coming the problems of centralization, would also enabérsus tion Network) [1] and the AMP project at NLANR [18].
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1. RELATED WORK to the crawler that has content relevant to the query, rather
. ) ) ~__than flooding the network with queries. As with PlanetP, this
In this section we describe systems that have similaritiggproach might direct the users to the correct resources |
with pFusionin their scope and objectives. time, as the bloom filters allow efficient membership queries
In PlanetP[11] participating nodes build a global invertedon the other hand, the deployment of transient web crawiters,
index over the keyword space which is partially constructedpplementary to our approach. For instance, in a P2P nietwor
by each node. The framework is based on bloom filters [2]f personal video sharers, each peer might in the background
which capture the index of some nod#. These filters are also crawl data from the WWW, or other P2P networks, and
then randomly gossiped across the rest community so thaegrate these new resources in the video sharing network.
each peer’; (P; # P;) can perform a membership query orsummary, the main drawback of the YouSearch approach is

the contents of;. Although bloom filters can efficiently be the central query resolution engine and the constructiah an
disseminated in a distributed environment, due to the smalhintenance of the bloom filters.

size of the bit-vector which maintains the filter, the high

churn rate [9] in P2P systems makes the maintenance of It is important to highlight that all the aforementioned
such structures an endeavor task. Note that the churn ry§tems do not take into account the underlying network
defines the number of individual peers that move into or ogfaracteristics making them inappropriate for systems tha
of a network over a specific period, thus a high rate migkely on wide-area packet routingFusionon the other hand
translate into a non-converging maintenance process of @ieviates the burden imposed on the underlying physical
bloom filters. Compared to our framework, PlanetP can le&gtwork by directing the bulk of the traffic to topologically
user queries to the correct answers in less time, given ti$@se-by nodes.

the filters_are in synchrony with the co_ntents of th_e PEers. | Foreseer [6], the authors propose the deployment of dis-
However, in an Internet-Scale context, this presumptiamois jp, ,tey bloom filters which are explicitly updated on chesg
eaS|Iy_ sat|sf|ab_le, thus we foc_us on only local knowledge g} 4qgitions in the network. Clearly such an approach has
the pnce_of an mcre_qseql costin gettmg to the correct arsweadvantages and disadvantages compared to ours: more data is
We consider the utilization of bloom filters supplementary by, ngmitted in the network which results in more resouree us
our approach and appropriate when the churn rate or the sigg hentially better performance. We take the view thay on

of the network is limited. query or query-reply messages should be transmitted, and we

In a different approach, the pSearch [43] system explores ggempt to maximize the use of the information thus dissipat
mantic spaces by using advanced techniques from the Informa

tion Retrieval field. It uses theector Space Model (VSN)7] In Remindin’ [44] a query routing technique is proposed
andLatent Semantic Indexing (LgI7] to generate a semanticto find peers based on social metaphors. In [21], a peer
space which is then distributed on top of a CAN [34] struauresampling service is proposed to be employed by gossip-based
P2P overlay. Since pSearch exploits a distributed form df Lgrotocols. Additionally, [32] uses small world peer netker
and VSM, it can support semantic searches, handling ca$esdistributed web search. However both approaches ésftabl

of synonymsand homonymsFor instance a search on “sick’connections to remote peers based on their query/queryhit
might uncover documents which never mention such a terpatterns while we additionally concentrate on selectingrpe
but which contain terms such as “ill. The execution of th&ased on their topological properties. Finally, an altévea
core ideas in pSearch require, as with PlanetP, some foapproach for publish/subscribe systems based on stracture
of global knowledge. In particular, in order to compute thB2P systems appeared in [16].

inverse document frequency (IDEjilized by these methods, Other systems with similar objectives to pFusion include

somebpdy has to either have access to the cor_‘nplete dqcu egtlnfoBeacons [10], PIER [19], and Odissea [42] projects.
collection, or has to have means to sample this collection.

g L . ote that when each distributed peer returns its own locall
both cases, this is a non-intuitive task given the unpretede |, . P . y
) . highest-ranked answers, then we need to deploy a distdbute
scale of the environments our work considers. Therefore we’ | . : . .
ranking algorithm that combines the results from the défer

consider this approach supplementary to our ideas in the €as g [23], [57]. If such an operation is too expensive, then

; . S e
where the P2P environment is small in size or when the .

. . . . somebody can focus on tlehighest ranked answers, for some
provisioning of semantic queries, rather than keyword igger

: . user-defined parametér, using well established distributed
is at premium.

top-k i Igorith 7].
The YouSearch project [3] at IBM Almaden proposesOp query processing algorithms [7]

the deployment of transient peer crawlers to build a searchThe remainder of the paper is organized as follows: In
engine that provides “always-fresh” content. The main idegection Il we provide an overview of ttg=usionarchitecture.

in YouSearch is that each user using the service contribufgsction IV presents the overlay construction module of our
its host to become a transient crawler. In effect, this tesubrchitecture, which organizes nodes by taking into account
in a network of transient crawlers in which each crawlehe underlying physical network. In Section V, we introduce
maintains an “always-fresh” snapshot of a pre-specified lithe query routing algorithms utilized by the pFusion aretit

of Web resources. Each crawler also sends a compact indgse. Section VI describes our experimental methodologl an
of its crawl (i.e. a bloom filter), to a centralized componaht Section VII the results of our evaluation. Finally, Sect\éhl
regular intervals. This helps the system to redirect useriga concludes the paper.



[1l. THE PFUSION ARCHITECTURE pFusion Architecture

. . . . . Fusion Node DDNO Overla;
In this section we provide an overview of thgFusion P _ Y
Architecture.pFusionis completely decentralized as there is Pmmi'ﬂi“" Query Routing Module ‘
no centralized component that assists in the network co Structure* Rank DPM
struction, maintenance or search process. The archieecty |[ ¢ DDNO_Overlay

Module

LookupDN
Searcher

of eachpFusionnode (see Figure 2) comprises three basi
components:

i) The Distributed Domain_Name _Qder (DDNO) Module Random | ()
(described in section 1V), which is a distributed overlay | o2 omarecner ||| | Shings
construction module utilized to cluster topologically sdeby ===
nodes together. This is achieved by having each node conng @ Z}) ——>QUERY p—
HTML RSS ————>QUERYHIT

to d/2 random neighbors and/2 other nodes in the same
domain (siblings), wherd denotes the number of neighbors. _ ' _
Sibling nodes are efficiently discovered by the deploymefig. 2, The Fien et carties o noie comanens ©
of distributed lookup messages and loZaineCachgswhich  technique for creating topologically aware overlay neksomnd ISM, which
contain information on which domains are reachable in-an is an efficient and accurate distributed technique for kegwguery routing.
hop radius.

i) The Intelligent Sarch Mechanism (ISM), which is
a keyword search mechanism used by eaétusion node
(described in section V). ISM consists of the following two
sub-components: 1) Rrofile Mechanismwhich a peer uses
to build a profile for each of its neighboring peers (i.e. the
qguery/queryhit pairs) and ZrelevanceRankvhich is a peer
ranking mechanism that uses the local profiles to select the
neighbors that will lead a query to the most relevant answers

iii) The Local Information_Retrieval Ehgine (LIRE), which
is a local index utilized by each node in order to efficiently
access its local data repository. Specifically, LIRE orgesi
local information into disk-based indexes which allow the
efficient execution of a wide range of queries (such as Boplea
wildcard, fuzzy and range searches). Note that the indexes
in our setting are incrementally updated as new information
arrives in the local repository. Merging of query results is
performed at the querying node which ranks results on their
local score returned by the source. LIRE can also use anThe overlay construction technique that is used by pFusion
external data fetcher for retrieving and storing content pgnust be entirely distributed and able to scale well both with
tinent to the interests of the node owner. For example a noéie number of nodes and with the rate that nodes join or leave
participating in apFusionnewspaper network may decide tdhe network.
act as a WWW-proxy, similarly to [3], [10], by crawling semi- To achieve our desiderata we create an overlay network
structured newswire located on regional newspaper wabsitghere the nodes are well connected to the other nodes in
or RSS [36] feeds which are already available by most majite same domain by making a fixed fraction (one half in
news agencies. The LIRE component is out of the scope tBe experiments) of the node connectisitding connections,

knowledge when we have to decide how a query will be

forwarded, or where a peer will connect to the network.
« We leverage previous work [22], [50] that shows how past
queries in the P2P system can be cached locally, and used
to guide future searches and improve performance. Thus
we avoid using mechanisms that have peers exchange
information describing their contents, again in accor@anc
with our philosophy of minimizing the dependence of the
system to the collaboration of the peers.
« Our objective is to build overlays that can minimize the
time and resource requirements for answering keyword
queries in unstructured peer-to-peer networks. Neverthe-
less, the overall recall and precision are still important,
and should not suffer for the sake of efficiency.

IV. THE OVERLAY MODULE IN PFUSION

this work. while the remaining are connections to random nodes. The
In designing our architecture we have the following desidefvo sets of connections serve different purposes: thengjbli
ata: connections are likely to be low latency connections siheg t

nnect nodes in the same domain, so they improve overall
iciency by making local searches very quick. The random
onnections help to maintain a connected graph. Additignal
ese connections enable queries with a small (Time-To-
H/e) to reach a large fraction of the network graph.

« We focus on unstructured P2P networks, which have be%fg
shown to work well for content-based retrieval [3], [10],e
[11], [43], [54]. Although structured P2P networks hav
their own important advantages, unstructured networ
impose very small demands on individual nodes, and ¢
easily accommodate nodes of varying power. Thus they
are compatible with our philosophy of minimizing the. Alternative techniques for topologically aware oveday
requirements the technique imposes on individual peers.It is important to note that the construction of an optimal

« We focus on fully distributed and autonomous operatiaoverlay is known to be NP-complete [13], [24], [33]. Below
for the peers. We try to minimize maintaining any globalve provide a brief description of previously proposed
state or structures that require the active cooperatitopologically aware overlay construction techniques.
between peers. Consequently we try to use only local



Binning SL Algorithm (BinSL) : The Short-Long (SL) B. Distributed Domain Name Order (DDNO)
topologically aware algorithm, was proposed in [33], and

operates in the following way: Each vertey, selects itsd 4 . )
neighbors by picking thel/2 nodes in the system that haveelusters nodes belonging to the same domain together withou

the shortest latency to itself (these connections are ctallff'® need of a centralized component. The motivation behind

short linkg and then selects anothdy2 vertices at random DPNO is to provide a way to find close neighbors without
(these connections are calldong linkg. ThereforeSL is the use of any global infrastructure. We observe that the use

a centralized algorithm as it requires than IP-latency in of landmarks in the BinSL algorithm, although useful for

order to find the latencies between the various node paisoviding distances between peers, is also restrictingesin
ch landmarks have to be identified, and maintained.

BinSL is a distributed version of the SL algorithm proposet
in [33]. Since the adjacency-matrix of IP latencies is not Our work aims in extending [33] so that comparable results
available in a distributed environmenBinSL deploys the C€an be achieved without using any landmarks. Clearly, tlye ke
notion of distributed binning[34] in order to approximate t0 this is providing a completely distributed way for idéying
these latencies. More specifically each node uses the rouR@ers that are likely to be close to a peer that is attempting
trip-time (RTT) from itself andk well-known landmarks to join the network. Our approach uses domain names and
{lil5..1;} on the Internet and eachatency is classified IS motivated by our earlier study on the network traffic of
into level ranges. The numeric ordering of the latenciefie Gnutella network in [52]. In our study we found that

concatenated by the level values represents the “bin” thie n@>8% of the nodes in a set afi4, 000 IPs belong to only 20
belongs to. ISPs. Therefore most nodes have a good probability of finding

othersibling nodes which makes our scheme beneficial for the

Other Techniques: Recently an approach to create resilier@rgest portion of the network.
unstructured overlays with small diameters was proposedFollowing [33], our technique tries to find, for a new peer,
in [46]. In the proposed algorithm a node selects from a set @heighbor peers such that the latency in the resulting oyerla
k nodes; nodes at random and then finds from the rst- is low (assuming shortest path routing). The valuedofs
r nodes the ones that have the largest degree. The algoritdminput to the technique. We assume that, although peers
results in networks with power-law distributions of nod€an join or leave the network, the number of active peers
degrees differentiating it therefore from BinSL and DDN@emains relatively constant, so the required average degre
in which we have a uniform distribution. Topologically-awa that is required to keep the graph connected can be estimated
overlays have also been addressed in the contextnfc- Note that our technique is usingy2 random connections per
tured P2P overlays in [8], [33], [48], [56]. Systems such ageer; this makes the network resilient to peer failures { [46
Vivaldi [12] assign synthetic coordinates to hosts so that t[4]). Recent work [46] can offer alternative techniques for
Euclidean distance between them estimates the actual retwehoosing the value of but typically this requires additional
latency. However, the coordinates have to be re-evaluatedkhowledge on the structure of the network. For example, in
an ongoing basis as opposed to DDNO in which sibling node] nodes find the neighbors of their potential neighbors
are located only during initialization. before choosing their connections.

Note that the requirement of an efficient overlay is esskntia
in many different types of networks such as Content Dif2eer Domain Names: Each node participating in a DDNO
tribution Networks (CDNSs) [1], Sensor Networks [20], [38]topology has somédomain Name (dn)which is a string
and Mobile Ad-hoc Networks [29], [40]. For instance, thehat conforms to the syntax rules of RFC 1035 [28]. Such a
Akamai [1] CDN offers SureRoutewhich enables users tostring, which is case insensitive, can be expressed with the
perform application-layer packet routing, through a \ditu regular expressiomn = label(.subdomain)t, where label
overlay network, in order to guarantee the delivery and to inrand subdomain are some strings with certain restrictions,
prove the performance in wide-area applications. In théeedn such as length and allowed characters. To determine whether
of Sensor NetworksData Centric Routing20], establishes two domain namegn; anddns belong to the same domain
low-latency paths between the sink and the sensors in orees introduce two functions: iBplit-Hash which allows us
to minimize the consumption of energy. Moreover Drata to efficiently encode urls and iginMatchwhich determines
Centric Storagg38] data with the same name (e.g. humidityvhether two domain names:; anddny belong to the same
readings) are stored at the same sensor in the networkingfferdomain or not. Thesplit-hashfunction is a hashing function
therefore efficient location and retrieval. Finally in MgbAd- that splits a domain namén into & hashes, wheré is the
hoc Networks, PeopleNet [29] presents a simple, inexpensiwumber of subdomain strings in (k = |subdomain(dn)|).
and low complexity architecture, for a peer-to-peer wesle A hash functionhash(m, subdomaingy,[j]) is used to hash
virtual social network. PeopleNet exploits the natural ffigh the subdomaing,[j] usingm bits. We chose to use hashcodes
of people and their interactions to propagate the queriemgm instead of raw domain-names because in our technique
neighboring nodes. Additionally the work in [40], studieslomain names will be propagated in the network and we
contact patterns among students in a University campus. Twant to reduce the size of messages. Two neblgsand dn,
study shows how small inter-contact times between users dave adnMatch(dni, dns) if the individual hashes match on
be exploited in order to design efficient aggregation atbors each subdomain.
involving only a small number of nodes.

In this section we describe tiRDNO algorithm [53], which
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Fig. 3. Domain-Name Lookup in a DDNO topology. EachlookupDN ~ attempt to establish a connectiondp2 nodes; these will be

message retains path information to populateZbeeCachesf other nodes. n's siblings.

'Flj'ztehlli?]t;ppends shown on the lookupDN message illustraet¢bumulated One important problem with this approach is thfamight
get locked in a cycle (e.g. loop — e — c in Figure 3).
To avoid this scenario we incorporate state informatiorf in

Joining a DDNO Topology: Let n denote a node which &S this also serves as an implicit mechanism to populate the
wants to join an overlay networkV. We assume that anZoneCaches along's path. The state information included

out-of-band discovery service (a hostcache or a local cadfe!: includes thesplit-hash  on the domain-name of each
that stores nodes to which was connected in some pasf‘Ode that’ traversed (i.estate; = {f(vn), .. (vm)})-

session) is able to providewith a random list of active hosts o . L
L={n1,ns, ...,ny}, for some constamt>¢, whered denotes ZoneCache: This is a caching structure which is deployed

the number of neighbors that maintains. It is important locally at each node and its functionality is to guitimessages

to notice that the individual hostcaches do not have glodQ their sibling nodes. In Figure 4 we present a snapshot of
knowledge and therefore cannot be used for disseminati ZoneCache structure. The first column includes the hash

some pre-computed overlay structure or the distances batw@' S0Mme domain-name and this information is extracted from
all node pairs to the peers. traversing? messages. The second column indicates the peer

After n obtains the listL it first attempts to establish aconnection that will lead a future search (denotedzyso the

connection tad/2 random nodes, wheré s the degree of. corresponding destination, and the third column indictttes

It is quite possible that some or all of the nodesin L are respective cost in hops. Finglly ZoneCaqhe_ uses a timestamp
not able to accept any new incoming connections. This migp]:f\rqme_ter (fourth column) in orqler to limit the numper of
either happen because reached its maximum degree oSntries in the structure to a total size@f Once the repository
becausew. went offline. In this case, will need to obtain an °f Some node becomes full the node uses the Least Recently

(3 . . . . .

additional list L from the hostcache. The next step is to fin(!ijs_l(?r(]j (LRU% policy to |nvlal|dﬁte r?ld ﬁntges. f th q h
d/2 sibling connections (nodes which have a dnMatch with e cache stores only the hashcodes of the nodes that

n). This is achieved by sending a Domain NahgokupDN are located within an-hop radius in order to both limit its
message (described next) to one of the existing (rando ize and accuracy. Although neighboring ZoneCaches could
neighbors actively exchange routing updates at regular intervale li

BGP [31], our passive caching scheme reduces significantly
the amount of transmitted message and works well in dynamic

Domain-Name Lookup in a DDNO Topology:We now focus .
environments.

our attention on thdookupDN procedure which is used by
some noden, in order to discover othesibling nodes inN.
We model the lookupDN message (denoted)ass amulticast
walker. The goal of the multicast walkeft is to reach some

nodem that can guide it to the destination (i.e. a sibling of . o
mn 9 ( 9 neighbor ofn leaves N then n will either attempt to re-

n). Note that before reaching:, £ may need to traverse a X . :
nzjmberof randomly selected%eighbor)ls,. This can be viewedeﬁtabIISh the dropped connection or find another node from

Figure 3, in which/ takes the random itineraiy, b, e, ¢, b, d]. the dispo_very servjce outlined before. On the other hand, if

At d however./ is allowed to make an informed decision Onsome3|bllng of n disconnects then consults itsZoneCache

which neighbor to follow next (in this example node f). n o_rder to_ send the new IOOkl.JpD.N message towar_ds_ a c_urrent

o . . . . Sébllng. It is expected that will discover another sibling in

This is achieved by using a special structure Comeonly 2 hops (as a node already maintam%s— 1) siblings)

ZoneCachehat contains information on which domains are '

reachable in am-hop radius (it will be discussed next). At the

end of this procedure/ is expected to reach some node V. QUERY ROUTING IN PFUSION

which is a sibling ofn. m then issues &roadcastmessage to  In this section we describe the query routing algorithms tha

all of its own siblings Each of the receiving nodes, includingcan be used to perform content-based searchgs-irsion

m, will respond with aLookupOKmessage (denoted #§ The techniques do not use any global knowledge, thus they

if they are willing to accept new connections. Thereforesodire completely decentralized and scale well with the size of

n will end up receiving several answers out of which it wilthe network.

DDNO Topology Maintenance: When a node disconnects
from the DDNO topology it does not need to send any a
?riori notification to the other nodes. However, if soraadom



A. Alternative Query Routing Techniques

Below we provide a brief description of alternative query
routing techniques evaluated in this paper. BFS is a tech-
nigue widely used in P2P file sharing applications, such as

Gnutella [15]. It works by recursively forwarding the query
on each node, to all neighbors (except the sender). In order @

éﬁ@wﬁle @

to avoid flooding the network with queries, as the network %ﬁ@
might be arbitrary large, each query is associated with a Cach
Time-To-Live (TTL) field which determines the maximum }
number of hops that a given query should be forwarded. QUERY
In [22] we propose and evaluate tfandom Breadth-First- ----» QUERYHIT
Search (RBFSfechnique. RBFS improves over the naive BFS
approach by allowing each node to forward the search requEgt 5. Searching in a P2P network using ISM. The profilingictire at
to onIy a fraction (0.5 in the experiments) of its peers. each node routes queries to nodes with relevant content.
Yang et al. [50] present a technique where each node
fs?;\gst:g: ?r?:ye::};;?p;(‘)em: nOJrrlfseFi?rgugil;?gugggar?gé:gg}g%med by each peer. Note that other numeric similarity
and show that thaost Results in Past{RES)heuristic has metrics, such as Jaccard coefficient, the dice coefficiedt an

the inner product (listed in [37]), are also appropriate ur 0
the best performance. I"RES a peen, forwards a search setting since these can again be computed locally.

message to _thk peers which returned the most results in the ISM works well in environments which exhibit strong de-
last 10 queries. . Lo
grees of query locality and where peers hold some spediblize
knowledge. Our study on the Gnutella network shows that this
B. The Intelligent Search Mechanism (ISM) characteristic is a reasonable assumption [52]. Although w
Keys to improving the speed and efficiency of the informaropose the ISM mechanism for keyword-based searches, the
tion retrieval mechanism is to minimize the communicatiohasic mechanism can also be used for content-based rétrieva
costs, that is, the number of messages sent between the p&ér@udio, image or video features as long as a similarity
and to minimize the number of peers that are queried fénction between the queries can be provided. Finally, ],[2
each search request. In [22] we propose the IntelligentcBeal54], we have conducted an analytical study of the RBFS
Mechanism (ISM) which is a fast and efficient mechanisearch mechanism.
for information retrieval in unstructured P2P networksMIS
achieves reduced messaging by having each peer to profile|sp over DDNO

the query/queryhit activity of its neighboring nodes. leth . . . .
uses this knowledge to forward queries to the neighbors thatThe existence of sibling and random links in the DDNO

are most likely going to reply to a given query. ISM consistg)pplogy can be further explqlte(_j N query routmg._ If a guer

of two components that run locally in each peer: i) a Profilg likely to generate query hits in the local domain then the

mechanism and ii) a RelevanceRank function peer can use the ISM mechanism to send the query only to
i) Profile Mechanism: each node maintains in a repositor)}he most likely S|bI|_ng WOd?S- we call th|s.mode thsort

the T most recent queries and the corresponding queryh ery mode. In this situation the query is only propagated

along with the number of results. Once the repository is fuftong sibling connections, and specifically the ones chasen

the node uses the Least Recently Used (LRU) replacemgpﬁ most relevant by ISM (see F!gure 5).
policy to keep the most recent queries. If the query results are not satisfactory, the query node can

ii) RelevanceRank (RR)is a function used by a nodg then re-issue the query using both sibling and rando_m nodes.
to perform an online ranking of its neighbors in order thlowever the "short” query mode can be very useful in many

determine to which ones to forward a quesyTo compute situations. Since all messages are sent to sibling nodes (in
the ranking of each peeP,, P, comparesq to all queries the same domain), it is very likely to terminate very quickly

in the profiling structure, for which there is a queryhit, angspemally since !t likely n.e_eds_a sma]l ”“mper Of hops to
calculatesR R, (P;, q) as follows: explore the domain. In addition, if there is locality of irgets,
1 79 .

RRp, (P q) — Qsim(q;,q)* = S(P;, q;) local peers are more Ilkely_to_have good results. Such a case
j = "Queryhits by P, can easily come up in our distributed newspaper examplet mos

. : . ueries are likely to be about local news.
where the deployed distance metigsim is the cosine g y

similarity [2] and S(P;, g;) is the number of results returned
by P; for queryg;. RR allows us to rank higher the peers that
returned more results allows us to add more weight to the To validate that it is possible to obtain the benefits of
most similar queries. For example, whenis large then the a topologically aware overlay using only local knowledge,
query with the largest similarity)sim(g;,q) dominates the our experimental evaluation focuses on the following three
formula. If we set = 1 all queries are equally counted, whileparameters: (i) theAggregate Tree Delay/r), which is a

settinga = 0 allows us to count only the number of resultsnetric of network efficiency for a given query that spans in

V1. EXPERIMENTAL EVALUATION METHODOLOGY
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NIST TREC Los Angeles Times Document Replication
DOMAIN DISTRIBUTION OF THE TOP10DOMAINS IN A DATASET OF

10 T T T T T T T T T
| | , Frequency of Replication === 244,000 IR FOUND INGNUTELLA.
c 8 B - -
-% # | Domain % || # Domain %
£ 1 | rr.com 10% || 6 | cox.net 3%
[}
ox 2 | aol.com 8% || 7 bellsouth.net | 2%
g 3 | t-dialin.net 6% || 8 shawcable.net 2%
°C3’ 4 | attbi.com 6% || 9 sympatico.ca | 2%
o
2 5 | comcast.net| 3% (| 10 | optonline.net | 1%
0 N T T TR T S
0 100 200 300 400 500 600 700 800 900 1000 A. Dataset Description
Documents (each consists of 132 articles)
TREC50x2 Experiment - Query Term Distribution We use two series of eXperlmentS based on THREC-

8 : : — : LATimes [45] dataset, a document collection of randomly
‘ _..Frequency of Replication = | selected articles that appeared on the LA Times newswire
‘ from 1989 to 1990. The size of this dataset is 470MB
and it contains approximately 132,000 articles. Theselasti
were horizontally partitioned into 2000 XML documents, leac
T subsequently indexed using the Lucene [25] IR API. These
i indexes, which are disk-based, allow the efficient quergihg

text-based sources using many IR features. We then generate

Frequency of Term Replication

N R R \ j j Random, BinSL and DDNO topologies of 1000 peers in which
; ' ' ' ' ' each peer shares one or more of the 1000 documents. We
5 20 0 60 80 100 120 use this scheme in order to provide some degree of article
Keywords found in the Queries replication (see Figure 661).
Fig. 6. a) Document Replicationof the TREC-LATimes dataseh) Query For the evaluation of the TREC-LATimes corpus we will
Term distribution for the TREC50x2 queryset use, as indicated by NIST, the TREC “topics” 300-450. One

problem with the provided 150 queries is that the query
term frequency is very low and most terms are presented
only once. This is not a realistic assumption since studies
the subgraph G’, (ii) thdRecall Rate that is, the fraction of on r(?al P2P networks (e.g. [52]) indicate that there is a hi_gh
Ipcality of query terms. Therefore we used the 150 queries

documents each of the search mechanisms retrieves, and (il : . :
to derive theTREC50x2 dataset, which consists of a set

the number oMessagesonsumed in order to find the results. . L
a ="50 randomly sampled queries out of the initial 150

To describe theAggregate Tree Delaylet G = (V,E) topics”. We then generated a lisbf another 50 queries which

denote an overlay graph with a vertex $ét= {1,2,...,n} are randomly sampled out af TREC50x3s then the queries

and an edge sdf. Queries posted if, create a spanning treein a and b randomly shuffled and the distribution of query

T which spans over the sub-gragh (G’ C G). Intuitively, terms can be viewed in Figure 6b.

an efficient overlay network can improve the query latency

by minimizing the sum of latencies along the explored edges. . . ,

More formally, the goal of our overlay construction techrdg B Simulating Network Distances

is to minimize: Ar = ) w(e), wherew is the latency  Evaluating distances in network topologies requires a

VeeT i i ; i
associated with edge in the treeT. It is important to dataset in which the IP latencies are not synthetic. Thezefo

notice that the delay cost associated with each edge mi(}‘,’{ﬁﬁ base our expgriments on traceroute_data fromAttie/e
be different for each direction between two nodgsand easurement ProjedfNLANR) [18] and ping data from the

v; (i.e. delay(vi,v;) # delay(v;,v;)). This happens becauseAk,amai Inte.rnet mapping infrastrycture [1] (AKAMAL).
packets on the Internet follow different paths or because th 1) NLANR: This dataset contains traceroutes between 117

upstream and downstream bandwidth of a node is differdppnitors of hosts on the Internet2 backbone. The trace snap-
(e.g. Cable/ADSL Modem Users). shot that we used, was obtained in January 2003 and had a

raw size of 1.8 GB. From the initial set of 117 monitors we

For theRecall Ratewe use as the baseline of comparisoaxtracted the 89 monitors which could be reversed DNS (i.e.
the results retrieved by querying the collection in a cdizigd given their IP we obtained a DNS name). We then construct
setting (i.e. as a corpus of documents) which thereforgmstuthe nxn IP-latency matrix (for all n=89 physical nodes), that
all relevant documents. We chose to implement the algosthrmontains the latency among all monitors. Since all 89 hosts
that require only local knowledge (i.e. BFS, RBESRES and are located at different domains, we randomly and uniformly
ISM) over Random, BinSL and DDNO topologies of the sameplicate nodes within each domain, providing thereforaeo
size and degree. degree of host replication per domain.
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Fig. 7. Aggregate Graph Delay(A¢) for the NLANR (left) and AKAMAI (right) dataset using fourifferent overlay topologies.

i) AKAMAI: This dataset contains latency measuremeri®00 lines to thepFusionnode and 2000 lines to topology
obtained in August 2004, from a very large number of “wellgenerators and other supplementary IO components.
positioned” servers to DNS servers on the Internet. In orderOur experimental testbed consists of three components:
to obtain annxn IP-latency matrix among all DNS servers(i) graphGen which pre-compiles network topologies and
we use the triangle inequality to lower bound the desirembnfiguration files for the various nodes participating inveeg
distances. More formally, let be a server that pings DNS experiment, (ii) thepFusion client which is able to answer
servers in the sdb. This creates a set afedges, each with an queries from its local XML repository using the Lucene [25]
associatedlistance(s,d) (d € D,¥d). The triangle inequal- IR Engine, and (iiij)searchPeemwhich is a P2P client that
ity implies that: distance(dy,d2) < min(distance(s,d;) + performs queries and harvests answers back fraofrasion
distance(s,d2)) network. Launching a network of 1000 nodes can be done

Since the name of each DNS servers was anonymizedinn approximately 10-20 seconds while querying the same
our dataset, we utilize a real set of 244,000 domain namestwork can be performed in around 250ms-1500ms.
that we obtained by crawling the Gnutella Network in [52].

More specifically we uniformly sample out of our initial sdt o VIl. EXPERIMENTAL EVALUATION
244,000 IP addresses 1000 unique addresses and then assiﬁp

th o th sed DNS Note that this section we describe a series of experiments that
1ese hames fo he anonymize servers. Note ha ﬁtl\?estigate the effect of the Random, BinSL, and DDNO
distribution of our sample preserves the initial distribat

_ i . - overlay topology structure on the recall rate and the mes-
closel_y (see Table I).' Using th_|s setting, nodes n differe aging of the various information retrieval search aldponis
domains have Igtenmes found in the Internet V\_'h'k? nodes dicussed in this paper. We focus on investigating if the @DN
the same domain are randomly assigned latencies in the raﬂ%)eology can significantly minimize the aggregate network
[10..50]ms. delay without sacrificing the recall rate.

Since the possible number of system executions can be very
C. The pFusion Simulation Infrastructure large, due to varying link latencies and the fact that qerie

In order to benchmark the efficiency of the various informdnight take different paths at the overlay, we present awsag
tion retrieval algorithms over various overlay topologiese ©Ver 10 runs. In order to present the statistical signifieanc
have implementegFusion using our open-sourcBeerware of our results we additionally present the mean and the 95%
systemt. We usepFusionto build a decentralized newspapeFonﬁdence interv_z;\?sfor Figure 8 and Figure 9 in Table Il and
network which is organized as a network of 1000 nodes. Ol@ple Il respectively.
experiments are performed on a network of 75 workstations
(each hosting a number of nodes), each of which has an AMD Comparing DDNO with other Techniques

Athlon 800MHz-1.4GHz processor with memories varying | the first experiment, we evaluate the performance of the
from 256MB-1GB RAM running Mandrake Linux 8.0 (kernelppno topology, and compare it to the BinSL and Random
2.4.3-20) all interconnected with a 10/100 LANFusionis algorithms using the a) NLANR and b) AKAMAI datasets.

written entirely in Java and comes along with an extensiVge evaluate the impact of the number of landmarks on the
set of UNIX shell scripts that allow the easy deployment arﬁ’erformance of the BinSL topology. By using more landmarks,

administration of the system. It consists of 13,500 linesatfe e number ofalse positiveslecreases. This happens because
with 6500 lines devoted to the core protocol implementation

2The 95% Confidence Interval indicates that there is a 0.95gmitity in
LAvailable at: http://www.cs.ucr.edu/ csyiazti/peeredutml any measurement to be within the given interval.
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Fig. 8. Aggregate Tree Delayfor the evaluation of the TREC50x2 queries. In the top row wmpare Random (left) and DDNO (right) topologies using
the AKAMAI dataset. In the bottom row we compare BinSL (leff)d DDNO (right) topologies using the NLANR dataset.

TABLE Il
THE MEAN AND THE 95% CONFIDENCE INTERVAL FOR THE PLOTS OFFIGURE 8.

Algorithm Ar (Random-Akamai) | A7 (DDNO-Akamai) | Ar (BinSL-NLANR) | A7 (DDNO-NLANR)
BFS 1,241,618 + 51,222 698,932 + 21,228 213,073 4+ 4,603 159,699 + 9,958
RBFS 357,071 4+ 16,900 247,667 £+ 14,555 77,055 + 2,285 58,580 £ 2,305
>RES 322,849+ 7,871 304,757 + 11, 344 83,759 + 2,659 82,989 + 2,837
ISM 536,361 + 24, 822 394, 160 + 24, 041 111,236 + 4, 301 77,869 + 5, 787

we get fewer collisions in the landmark codes of hosts that ahat by using no landmarks, the BinSL topology is essentiall
not topologically close to each other. We use the centrdliza Random topology. This happens because a node selects all
SL algorithm as a benchmark to compare against. its connections at random which makas; of the Random

In Figure 7, we calculate the sum of the delayassociated and BinSL topologies identical. The figure shows that by
with all edges in the respective grapfis (1000 peers each adding a few landmarks (i.e. 1-1Q); for the BinSL topology
with an average degree of 6). This sum is more formaljecreases substantially, but after a paky; decreases at a

defined asA¢ = 3 w(e), wherew is the latency of each lower rate. Therefore by selecting an arbitrary large numbe
. Veed . L of landmarks may not be very efficient as each landmark
edgee in the graphG:. We use this metric, instead of the robing comes with an additional network cost and because
B D e o 5 ocbendent of 1 GeploYee A paramete of the graph does o sgnfcanty op
the oridi que. ' y b gure 7 also shows that the lower bound provided Sy
ginal network the set of landmarks. Note that in a refl”lass than what other topologies achieve, it is not

setting, peers would have a predefined list of landmarks (ifg ible i fi it : lobal k ledae (he ftill
globally spread HTTP or DNS servers). The figures indicatealSI € in practice as it requires global knowledge (he.
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nXn matrix). In the experiments presented in the subsequegorithms. The figures indicate that we caraintain high
subsections, we set the number of landmarks to 20. The reakewels of recall rate while keeping th&; parameter low(as

why the graphs based on the NLANR latencies have a lowgtown in the previous subsection).

A¢ that those in the AKAMAI latencies, is that NLANR In the same figures we can also observe the effectiveness of
measurements are between Internet2 hosts among which éheh search technique. More specifically, BFS requiresstimo
latency is very low. An extensive experimental comparisbn @.5 times more messages than the other techniques. The ISM
DDNO, BinSL and Random, which includes scalability, falur search technique on the other hand, learns from its profiling
and bootstrapping experiments, can be found in [53]. structure and guides the queries to the network segmerits tha
contain the most relevant documents. On the other hand both
RBFS’s and>RES's recall rates fluctuate, which indicates that

. . , . >RES may behave as bad as RBFS if the queries don't follow
In our second experiment, we investigatepiFusioncan g¢ome repetitive pattern.

succeed in minimizing the Aggregate Deldy, of a query,  Finally, we note that Random topologies with BFS require

while in the Section VII-Q, we will show 'Fhat this does nOTinghtIy more messages«(0%), and consequently are able to
affect the recall rate _and it also does not increase mespagifoore slightly higher recall rates (in our experimests5%)

_In the top row of Figure 8 we compare the following casegising the same parameter settings because fewer query paths
1) a Random topology with BFS query routing (essentially thgre short-circuited A query ¢ is short-circuited if its TTL
Gnutella scenario), i) a Random topology with an efficierfarameter hasn't reached zero, but it is discarded bechase t

query mechanism (we experiment with ISNKRES, and game query with a larger TTL already passed from a given
RBFS), iii) a DDNO topology with BFS query routing, andnoqe. Note that such a query could explore some additional
iv) the pFusionarchitecture that combines a DDNO topolog¥,etyork segment with its remaining TTL value. However in
and efficient query routing using the AKAMAI dataset Qe pFysionapproach (DDNO and ISM), the recall rate is not
create the network and answering the TREC50x2 querysgffected because ISM tries to both explore the largest arel mo
In the BFS case, we configure each query messages Willkyant segments of the network. This happens because shor
a TTL parameter of five since this technique is consuming.c ited areas are penalized by RelevanceRank and explore
extraordinary amounts of messages. With this setting, yqugggg frequently.

messages are able to reach 859 out of the 1000 rodes, aqdition to theTREC50xXataset, we also experimented
Therefore it was expected that BFS's recall rate would Bei tvo other querysetsTREC100 a set of 100 randomly
less than the recall rate obtained by evaluating the Wh@ﬁmpled queries, out of the initial 150 TREC queries, and
dataset in a centralized setting. The rest techniquesBES, TREC10x10a set of 10 randomly sampled queries, which are
ISM and >RES), use a TTL of 6 as they offer reducedyqcyted 10 times consecutively. In both cases we observe a
messaging, which allows us to explore the network grapfiyijar hehavior and therefore omit these results for liyevi
deeper while maintaining low messaging. Finally, the agerayqte that the TREC100 contains a low locality of reference

time to perform a query for the BFS case is in the order §f i queries, but this does not seem to affect significahidy
1.5 seconds but results start streaming back to the query n%iolrning process of the ISM search algorithm.

within_the first few miIIis_econds. By comparing Figure 8 (top Finally, we observe that in all curves of Figures 8 and 9,
left) with Figure 8 (_top-rlght) can reduce tmef _parameter by the standard deviation to within 95% confidence, is in most
a factor of three. Figure 8 (bottom-left) with Figure 8 (lwwii- cases 4-7%

right) shows that DDNO also has significant benefits againstour experimental results show that random overlay topolo-
BinSL. The figures also indicate that the improved sear?‘ix

hni ISM~RES and RBFS h anif ; es make information retrieval algorithms, proposed erg
techniques , > an ave significant saving terature, significantly more resource demanding and slow
over the naive BFS approach.

particular, the Aggregate Tree Delay graphs in Figure 8ysho
that random topologies are twice as expensive, in terms of
C. Maintaining High Recall Rates and Low Messaging delay along the query path, as the optimized DDNO topology.

So far we have seen that by using a DDNO topology wan the contrary, the minimization of delay that is achievgd b
are able to reduce thd; parameter. However this singIeDDNO’ does not affect the recall rate in such systems, as this

parameter is not enough in the context of information regiie 'S Shown by Figure 9.

applications, as these applications are required to reten

most relevant documents. Furthermore, if some search tech- VIII. CONCLUSIONS
nigue always explored the shortest latency neighbors then t

Ay parameter would be minimal but the query would with We considered and evaluated the impact of the use of

. - . ; tppologically aware overlay networks on the performance
very high probability get locked in some region and wouloc; fully distributed P2P information retrieval techniques

not explore the larger part of the netwqu graph. Th|§ Wou@pecifically, we show that it is possible to efficiently organ
consequently reduce the recall rate which is not desirdble. : : S
the overlay network using only local information, in order t

Figure 9, we plot the recall rate required by the differearsh significantly improve the query latency. We also show how to

3with a TTL of 6 and 7, we would be able to reach 998 and 1000 nodé@ke advantage of this orggnization when routing the gserie
at a cost of8, 500 messages/query and, 500 messages/query respectively.in the network. Our experimental results demonstrate that

B. Minimizing Network Delays
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Fig. 9. Recall Rate (top row) andMessagegbottom row) for the evaluation of the TREC50x2 over Randdeft Column) and DDNO topologies (right
column) using the AKAMAI dataset. For the NLANR dataset weaited similar results and omitted their presentation @uspace limitations.

TABLE Il

THE MEAN g AND THE 95% CONFIDENCE INTERVAL FOR THE PLOTS OFFIGURE 9.

Algorithm Recall (Rand-Akamai) | Recall (DDNO-Akamai) | Msgs (Rand-Akamai) | Msgs (DDNO-Akamai)
BFS 82.18 £5.45 79.11 £4.42 4,603 £ 217 4,133 £ 137
RBFS 48.19 4+ 5.53 50.29 £5.39 1,409 + 49 1,450 + 82
>RES 44.66 £+ 5.32 59.48 + 5.54 1,554 + 22 1,632 + 56
ISM 75.00 £ 5.96 74.42£5.24 1,522+ 72 1,764 + 129
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