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Abstract— The emerging Peer-to-Peer (P2P) model has become
a very powerful and attractive paradigm for developing Internet-
scale systems for sharing resources, including files and docu-
ments. The distributed nature of these systems, where nodes
are typically located across different networks and domains,
inherently hinders the efficient retrieval of information. In this
paper we consider the effects of topologically-aware overlay
construction techniques on efficient peer-to-peer keywordsearch
algorithms. We present thepFusion (Peer Fusion) architecture
that aims to efficiently integrate heterogeneous information that
is geographically scattered on peers of different networks. Our
approach builds on work in unstructured peer-to-peer systems,
and uses only local knowledge. Our empirical results, usingthe
pFusion middleware architecture and datasets from AKAMAI,
NLANR and TREC, show that the architecture we propose is
both efficient and practical.

Index Terms— Information Retrieval, Peer-to-Peer, Overlay
Construction Algorithms.

I. I NTRODUCTION

The worldwide infrastructure of computers and networks
creates exciting opportunities for collecting vast amounts of
data and for sharing computers and resources on an unprece-
dented scale. In the last few years, the emerging Peer-to-
Peer (P2P) model has become a very powerful and attractive
paradigm for developing Internet-scale file systems [34], [35],
[41] and sharing resources (i.e., CPU cycles, memory, storage
space, network bandwidth) over large scale geographical areas.
The basic idea is that an overlay network of nodes (peers) is
constructed on top of heterogeneous operating systems and
networks. Overlays are flexible and deployable approaches
that allow users to perform distributed operations without
modifying the underlying physical network.

The first wave of P2P systems implementedunstructured
P2P overlays in which no global structure or knowledge
is maintained. To search for data or resources, messages
are sent over multiple hops from one peer to another with
each peer responding to queries for information it has stored
locally. StructuredP2P overlays [34], [35], [41] implement a
distributed hash table data structure in which every data item
can be located within a small number of hops, at the expense
of keeping some state information locally at the nodes.

Unstructured P2P systems [6], [9], [10], [50], [54] are very
effective infrastructures to share and store documents, because

D. Zeinalipour-Yazti is with the Department of Computer Science at the
University of Cyprus; email: dzeina@cs.ucy.ac.cy; V. Kalogeraki and D.
Gunopulos are with the Department of Computer Science & Engineering at
the University of California - Riverside; email:{vana,dg}@cs.ucr.edu

their decentralized nature allows easy additions, updates, in-
creased storage, and offers fault-tolerant properties through the
use of replication and caching. In addition, recent effortsbased
on caching [22] and other heuristics [50] have significantlyim-
proved the query routing problem in unstructured P2P systems
as well. An important problem that such systems have not fully
considered, is how the heterogeneity of the underlying infras-
tructure affects the performance of the information retrieval
algorithms implemented on top of these networks. The P2P
infrastructure can encompass resources with different process-
ing and communication capabilities, located across different
geographical areas. As a result, retrieving documents oversuch
Internet-scaleenvironments is subject to greater variations due
to unpredictable communication latencies, excessive resource
consumption and changing resource availability.

In this paper we focus on techniques fordistributed keyword
search, that is, we aim to find the documents that contain a
given set of query terms when the collection of documents is
distributed. Formally, assuming thatDu is a set of documents
that are stored on peeru, and each documentd is characterized
by a set of keywords, the result to a queryq (itself as a
Boolean expression of keywords), should be theanswer set
{(d, u)|u is a peer and q⊂ s(d) andd ∈ Du}, wheres(d)
is the (unordered) set of keywords ind. To motivate our
description we consider two popular applications,Personal
Video SharingandCitizen Journalism, both of which currently
support keyword searches over centralized infrastructures.
We explain how these services could optimize their operation
through the deployment of topologically-aware P2P networks.

Personal Video Sharing: Web sites, such as
Youtube.com [51] and Yahoo Video [49], allow users
to upload, search, browse and view on-demandthe video
clips of other users through a keyword-based search interface.
Such systems typically exploit a centralized storage and
retrieval infrastructure which has a number of disadvantages
and limitations: i) the service can easily become a bottleneck
during periods of high demand and is also a single point
of failure; ii) the infrastructure is expensive and requires
extensive administration and iii) the content can be censored.
On the contrary, we model such a service on the premise of
an unstructured P2P system, where each user stores locally
its own video clips and performs thesearch and retrieval
functions through other participating users in a Gnutella-like
fashion [15].

An important point in such Internet-scale applications, is
that the large-scale data transfer and retrieval can be expensive
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Fig. 1. A peer in Riverside, CA (USA) that is connected to five other peers.
In Internet-scaleapplications the large-scale data transfer and retrieval can be
expensive when network connections among theclients are arbitrary due to
unpredictable communication latencies, excessive resource consumption and
changing resource availability in inter-domain routing.

when the network connections among theclientsare arbitrary,
due to unpredictable communication latencies, excessive
resource consumption and changing resource availability
in inter-domain routing. Thus, we seek to optimize the
overlay by establishing connections between peers based
on the criterion ofnetwork proximity. In particular, peers
minimize the network distance from their neighboring nodes
by establishing connections to nodes that belong to the same
domain. For example, a node in the Rochester NY (USA)
subdomain of the RoadRunner ISP (rochester.rr.com),
tries to establish overlay connections with other nodes in
this same domain. In Section VII, we will show that such
a construction provides tremendous reductions in resource
consumption and offers an improved user experience. Note
that both of these characteristics are essential in a video
sharing context where humongous amounts of data are
communicated over a public infrastructure.

Citizen Journalism: We are all witnessing the rise in a
new form of journalism, where non-journalist have an active
role in collecting, analyzing and generating newswire based
on their personal rules of fairness and objectivity, often
also referred to asCitizen Journalism[27]. The website
voiceofsandiego.com, establishes half of its content from its
contributing authors [27] and this new way of performing
journalism has profound implications on the future of news
media. Content in such applications is currently communicated
to users through centralized Web sites, which suffer from the
same disadvantages as the P2P video sharing application: they
require expensive infrastructures and administration, can easily
become a bottleneck during periods of high demand and the
postings can be censored by the site owners. Additionally, in
these applications the update frequency is significantly high,
as authors are continuously adding new postings. Therefore
crawler-based meta-services, such as Google News, have to
continuously crawl the given resources. Finally, it also difficult
to organize the information into regional or local news, if the
underlying data does not contain this information.

Using a topologically-aware P2P system, besides of over-
coming the problems of centralization, would also enable users

to more easily retrieve local or regional content. For instance
users in Italy might often be interested in local or regional
news. In these cases focalizing on content in the ”.it” domain
might unveil more relevant and interesting content.

In this paper we present the architecture of an Internet-
scale middleware that can be used for efficient content-based
search and retrieval in a variety of contexts. Our architecture,
pFusion, is designed to make keyword search efficient in
unstructured P2P networks that are geographically diverse.
Although the necessity of topologically-aware overlays has
been addressed in the context of structured overlays [8], [33],
[48], [56], content-based retrieval in such systems is a more
challenging task [9], [14].

We consider unstructured P2P networks because they offer a
number of important advantages: (i) Unstructured networksare
appropriate for content-based retrieval (e.g. keyword searches)
as opposed to object identifiers utilized in structured over-
lays [3], [10], [11], [43], [54]. (ii) An unstructured network
imposes very small demands on individual nodes, as it allows
nodes to join or leave the network without significantly
affecting the system performance. (iii) Finally unstructured
networks can easily accommodate nodes of varying power.
Consequently they scale into very large sizes and they offer
more robust performance in the presence of node failures and
connection unreliability.

Unstructured P2P systems have been utilized in a number of
file-sharing systems, such as Gnutella [15], Napster [26] and
Morpheus [30]. Although the US Supreme Court had ruled
on June 26, 2005, that companies enabling such file-sharing
systems can be held liable for the widespread copyright
infringement of their users, it is important to point out that
the P2P technology is not illegal in its own respect. On the
contrary, P2P architectures have been the enabling technology
behind several legitimate Internet-Scale services, including
the popular Internet telephony service Skype [39], the film
content distribution network by the entertainment giant Warner
bros. [47], and several other services. Thus, P2P services have
a viable prospect, given that these systems are utilized in a
legal manner.

This paper builds on our previous work in [55], in which we
evaluate various content-based search and retrieval algorithms
over popular types of overlay networks. In this paper we pro-
pose an integrated architecture that combines two major com-
ponents to efficiently construct and search an overlay network:
The Distributed Domain Nameorder protocol, which is an
efficient distributed technique for constructing topologically-
aware overlay networks, and theIntelligent Search Mechanism,
which is an efficient distributed technique for keyword query
routing. We perform an extensive experimental evaluation
using ourpFusion architecture. Our objective is toimprove
the latency, while maintaining the accuracy of the results.
Our results show that the use of topologically-aware overlays
minimizes network delays while maintaining high recall rates
and low numbers of messages. To evaluate the impact of the
overlay we construct realistic P2P networks based on node
distributions from the Gnutella network [15] and end-to-end
latency information from the Akamai CDN (Content Distribu-
tion Network) [1] and the AMP project at NLANR [18].
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II. RELATED WORK

In this section we describe systems that have similarities
with pFusionin their scope and objectives.

In PlanetP[11] participating nodes build a global inverted
index over the keyword space which is partially constructed
by each node. The framework is based on bloom filters [5],
which capture the index of some nodePi. These filters are
then randomly gossiped across the rest community so that
each peerPj (Pj 6= Pi) can perform a membership query on
the contents ofPi. Although bloom filters can efficiently be
disseminated in a distributed environment, due to the small
size of the bit-vector which maintains the filter, the high
churn rate [9] in P2P systems makes the maintenance of
such structures an endeavor task. Note that the churn rate
defines the number of individual peers that move into or out
of a network over a specific period, thus a high rate might
translate into a non-converging maintenance process of the
bloom filters. Compared to our framework, PlanetP can lead
user queries to the correct answers in less time, given that
the filters are in synchrony with the contents of the peers.
However, in an Internet-Scale context, this presumption isnot
easily satisfiable, thus we focus on only local knowledge at
the price of an increased cost in getting to the correct answers.
We consider the utilization of bloom filters supplementary to
our approach and appropriate when the churn rate or the size
of the network is limited.

In a different approach, the pSearch [43] system explores se-
mantic spaces by using advanced techniques from the Informa-
tion Retrieval field. It uses theVector Space Model (VSM)[17]
andLatent Semantic Indexing (LSI)[17] to generate a semantic
space which is then distributed on top of a CAN [34] structured
P2P overlay. Since pSearch exploits a distributed form of LSI
and VSM, it can support semantic searches, handling cases
of synonymsand homonyms. For instance a search on “sick”
might uncover documents which never mention such a term,
but which contain terms such as “ill’. The execution of the
core ideas in pSearch require, as with PlanetP, some form
of global knowledge. In particular, in order to compute the
inverse document frequency (IDF)utilized by these methods,
somebody has to either have access to the complete document
collection, or has to have means to sample this collection. In
both cases, this is a non-intuitive task given the unprecedented
scale of the environments our work considers. Therefore we
consider this approach supplementary to our ideas in the case
where the P2P environment is small in size or when the
provisioning of semantic queries, rather than keyword queries,
is at premium.

The YouSearch project [3] at IBM Almaden proposes
the deployment of transient peer crawlers to build a search
engine that provides “always-fresh” content. The main idea
in YouSearch is that each user using the service contributes
its host to become a transient crawler. In effect, this results
in a network of transient crawlers in which each crawler
maintains an “always-fresh” snapshot of a pre-specified list
of Web resources. Each crawler also sends a compact index
of its crawl (i.e. a bloom filter), to a centralized componentat
regular intervals. This helps the system to redirect user queries

to the crawler that has content relevant to the query, rather
than flooding the network with queries. As with PlanetP, this
approach might direct the users to the correct resources in less
time, as the bloom filters allow efficient membership queries.
On the other hand, the deployment of transient web crawlers,is
supplementary to our approach. For instance, in a P2P network
of personal video sharers, each peer might in the background
also crawl data from the WWW, or other P2P networks, and
integrate these new resources in the video sharing network.In
summary, the main drawback of the YouSearch approach is
the central query resolution engine and the construction and
maintenance of the bloom filters.

It is important to highlight that all the aforementioned
systems do not take into account the underlying network
characteristics making them inappropriate for systems that
rely on wide-area packet routing.pFusionon the other hand
alleviates the burden imposed on the underlying physical
network by directing the bulk of the traffic to topologically
close-by nodes.

In Foreseer [6], the authors propose the deployment of dis-
tributed bloom filters which are explicitly updated on changes
or additions in the network. Clearly such an approach has
advantages and disadvantages compared to ours: more data is
transmitted in the network which results in more resource use
but potentially better performance. We take the view that only
query or query-reply messages should be transmitted, and we
attempt to maximize the use of the information thus dissipated.

In Remindin’ [44] a query routing technique is proposed
to find peers based on social metaphors. In [21], a peer
sampling service is proposed to be employed by gossip-based
protocols. Additionally, [32] uses small world peer networks
for distributed web search. However both approaches establish
connections to remote peers based on their query/queryhit
patterns while we additionally concentrate on selecting peers
based on their topological properties. Finally, an alternative
approach for publish/subscribe systems based on structured
P2P systems appeared in [16].

Other systems with similar objectives to pFusion include
the InfoBeacons [10], PIER [19], and Odissea [42] projects.
Note that when each distributed peer returns its own locally
highest-ranked answers, then we need to deploy a distributed
ranking algorithm that combines the results from the different
peers [23], [57]. If such an operation is too expensive, then
somebody can focus on thek highest ranked answers, for some
user-defined parameterk, using well established distributed
top-k query processing algorithms [7].

The remainder of the paper is organized as follows: In
Section III we provide an overview of thepFusionarchitecture.
Section IV presents the overlay construction module of our
architecture, which organizes nodes by taking into account
the underlying physical network. In Section V, we introduce
the query routing algorithms utilized by the pFusion architec-
ture. Section VI describes our experimental methodology and
Section VII the results of our evaluation. Finally, SectionVIII
concludes the paper.
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III. T HE PFUSION ARCHITECTURE

In this section we provide an overview of thepFusion
Architecture.pFusion is completely decentralized as there is
no centralized component that assists in the network con-
struction, maintenance or search process. The architecture
of eachpFusion node (see Figure 2) comprises three basic
components:

i) The Distributed Domain Name Order (DDNO) Module
(described in section IV), which is a distributed overlay
construction module utilized to cluster topologically close-by
nodes together. This is achieved by having each node connect
to d/2 random neighbors andd/2 other nodes in the same
domain (siblings), whered denotes the number of neighbors.
Sibling nodes are efficiently discovered by the deployment
of distributed lookup messages and localZoneCaches, which
contain information on which domains are reachable in anr-
hop radius.

ii) The Intelligent Search Mechanism (ISM), which is
a keyword search mechanism used by eachpFusion node
(described in section V). ISM consists of the following two
sub-components: 1) AProfile Mechanism, which a peer uses
to build a profile for each of its neighboring peers (i.e. the
query/queryhit pairs) and 2)RelevanceRank, which is a peer
ranking mechanism that uses the local profiles to select the
neighbors that will lead a query to the most relevant answers.

iii) The Local Information Retrieval Engine (LIRE), which
is a local index utilized by each node in order to efficiently
access its local data repository. Specifically, LIRE organizes
local information into disk-based indexes which allow the
efficient execution of a wide range of queries (such as Boolean,
wildcard, fuzzy and range searches). Note that the indexes
in our setting are incrementally updated as new information
arrives in the local repository. Merging of query results is
performed at the querying node which ranks results on their
local score returned by the source. LIRE can also use an
external data fetcher for retrieving and storing content per-
tinent to the interests of the node owner. For example a node
participating in apFusionnewspaper network may decide to
act as a WWW-proxy, similarly to [3], [10], by crawling semi-
structured newswire located on regional newspaper websites
or RSS [36] feeds which are already available by most major
news agencies. The LIRE component is out of the scope of
this work.

In designing our architecture we have the following desider-
ata:

• We focus on unstructured P2P networks, which have been
shown to work well for content-based retrieval [3], [10],
[11], [43], [54]. Although structured P2P networks have
their own important advantages, unstructured networks
impose very small demands on individual nodes, and can
easily accommodate nodes of varying power. Thus they
are compatible with our philosophy of minimizing the
requirements the technique imposes on individual peers.

• We focus on fully distributed and autonomous operation
for the peers. We try to minimize maintaining any global
state or structures that require the active cooperation
between peers. Consequently we try to use only local
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Fig. 2. The pFusion Architecture combines two novel components to
efficiently search the network: DDNO, which is an efficient distributed
technique for creating topologically aware overlay networks, and ISM, which
is an efficient and accurate distributed technique for keyword query routing.

knowledge when we have to decide how a query will be
forwarded, or where a peer will connect to the network.

• We leverage previous work [22], [50] that shows how past
queries in the P2P system can be cached locally, and used
to guide future searches and improve performance. Thus
we avoid using mechanisms that have peers exchange
information describing their contents, again in accordance
with our philosophy of minimizing the dependence of the
system to the collaboration of the peers.

• Our objective is to build overlays that can minimize the
time and resource requirements for answering keyword
queries in unstructured peer-to-peer networks. Neverthe-
less, the overall recall and precision are still important,
and should not suffer for the sake of efficiency.

IV. T HE OVERLAY MODULE IN PFUSION

The overlay construction technique that is used by pFusion
must be entirely distributed and able to scale well both with
the number of nodes and with the rate that nodes join or leave
the network.

To achieve our desiderata we create an overlay network
where the nodes are well connected to the other nodes in
the same domain by making a fixed fraction (one half in
the experiments) of the node connectionssibling connections,
while the remaining are connections to random nodes. The
two sets of connections serve different purposes: the sibling
connections are likely to be low latency connections since they
connect nodes in the same domain, so they improve overall
efficiency by making local searches very quick. The random
connections help to maintain a connected graph. Additionally,
these connections enable queries with a smallTTL (Time-To-
Live) to reach a large fraction of the network graph.

A. Alternative techniques for topologically aware overlays

It is important to note that the construction of an optimal
overlay is known to be NP-complete [13], [24], [33]. Below
we provide a brief description of previously proposed
topologically aware overlay construction techniques.
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Binning SL Algorithm (BinSL) : The Short-Long (SL)
topologically aware algorithm, was proposed in [33], and
operates in the following way: Each vertexvi, selects itsd
neighbors by picking thed/2 nodes in the system that have
the shortest latency to itself (these connections are called
short links) and then selects anotherd/2 vertices at random
(these connections are calledlong links). ThereforeSL is
a centralized algorithm as it requires thenxn IP-latency in
order to find the latencies between the various node pairs.
BinSL is a distributed version of the SL algorithm proposed
in [33]. Since the adjacency-matrix of IP latencies is not
available in a distributed environment,BinSL deploys the
notion of distributed binning[34] in order to approximate
these latencies. More specifically each node uses the round-
trip-time (RTT) from itself andk well-known landmarks
{l1l2..lk} on the Internet and eachlatency is classified
into level ranges. The numeric ordering of the latencies
concatenated by the level values represents the “bin” the node
belongs to.

Other Techniques: Recently an approach to create resilient
unstructured overlays with small diameters was proposed
in [46]. In the proposed algorithm a node selects from a set of
k nodes,r nodes at random and then finds from the restf=k-
r nodes the ones that have the largest degree. The algorithm
results in networks with power-law distributions of node
degrees differentiating it therefore from BinSL and DDNO
in which we have a uniform distribution. Topologically-aware
overlays have also been addressed in the context ofStruc-
tured P2P overlays in [8], [33], [48], [56]. Systems such as
Vivaldi [12] assign synthetic coordinates to hosts so that the
Euclidean distance between them estimates the actual network
latency. However, the coordinates have to be re-evaluated on
an ongoing basis as opposed to DDNO in which sibling nodes
are located only during initialization.

Note that the requirement of an efficient overlay is essential
in many different types of networks such as Content Dis-
tribution Networks (CDNs) [1], Sensor Networks [20], [38]
and Mobile Ad-hoc Networks [29], [40]. For instance, the
Akamai [1] CDN offersSureRoute, which enables users to
perform application-layer packet routing, through a virtual
overlay network, in order to guarantee the delivery and to im-
prove the performance in wide-area applications. In the context
of Sensor Networks,Data Centric Routing[20], establishes
low-latency paths between the sink and the sensors in order
to minimize the consumption of energy. Moreover inData
Centric Storage[38] data with the same name (e.g. humidity
readings) are stored at the same sensor in the network, offering
therefore efficient location and retrieval. Finally in Mobile Ad-
hoc Networks, PeopleNet [29] presents a simple, inexpensive
and low complexity architecture, for a peer-to-peer wireless
virtual social network. PeopleNet exploits the natural mobility
of people and their interactions to propagate the queries among
neighboring nodes. Additionally the work in [40], studies
contact patterns among students in a University campus. The
study shows how small inter-contact times between users can
be exploited in order to design efficient aggregation algorithms
involving only a small number of nodes.

B. Distributed Domain Name Order (DDNO)

In this section we describe theDDNO algorithm [53], which
clusters nodes belonging to the same domain together without
the need of a centralized component. The motivation behind
DDNO is to provide a way to find close neighbors without
the use of any global infrastructure. We observe that the use
of landmarks in the BinSL algorithm, although useful for
providing distances between peers, is also restricting since
such landmarks have to be identified, and maintained.

Our work aims in extending [33] so that comparable results
can be achieved without using any landmarks. Clearly, the key
to this is providing a completely distributed way for identifying
peers that are likely to be close to a peer that is attempting
to join the network. Our approach uses domain names and
is motivated by our earlier study on the network traffic of
the Gnutella network in [52]. In our study we found that
58% of the nodes in a set of244, 000 IPs belong to only 20
ISPs. Therefore most nodes have a good probability of finding
othersibling nodes which makes our scheme beneficial for the
largest portion of the network.

Following [33], our technique tries to find, for a new peer,
d neighbor peers such that the latency in the resulting overlay
is low (assuming shortest path routing). The value ofd is
an input to the technique. We assume that, although peers
can join or leave the network, the number of active peers
remains relatively constant, so the required average degree
that is required to keep the graph connected can be estimated.
Note that our technique is usingd/2 random connections per
peer; this makes the network resilient to peer failures ( [46]
[4]). Recent work [46] can offer alternative techniques for
choosing the value ofd but typically this requires additional
knowledge on the structure of the network. For example, in
[46] nodes find the neighbors of their potential neighbors
before choosing their connections.

Peer Domain Names: Each node participating in a DDNO
topology has someDomain Name (dn), which is a string
that conforms to the syntax rules of RFC 1035 [28]. Such a
string, which is case insensitive, can be expressed with the
regular expressiondn = label(.subdomain)+, where label
and subdomain are some strings with certain restrictions,
such as length and allowed characters. To determine whether
two domain namesdn1 anddn2 belong to the same domain
we introduce two functions: i)Split-Hash, which allows us
to efficiently encode urls and ii)dnMatchwhich determines
whether two domain namesdn1 anddn2 belong to the same
domain or not. Thesplit-hashfunction is a hashing function
that splits a domain namedn into k hashes, wherek is the
number of subdomain strings indn (k = |subdomain(dn)|).
A hash functionhash(m, subdomaindn[j]) is used to hash
thesubdomaindn[j] usingm bits. We chose to use hashcodes
instead of raw domain-names because in our technique
domain names will be propagated in the network and we
want to reduce the size of messages. Two nodesdn1 anddn2

have adnMatch(dn1, dn2) if the individual hashes match on
each subdomain.
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Fig. 3. Domain-Name Lookup in a DDNO topology. Each lookupDN
message retains path information to populate theZoneCachesof other nodes.
The list appends shown on the lookupDN message illustrate the accumulated
path in ℓ.

Joining a DDNO Topology: Let n denote a node which
wants to join an overlay networkN . We assume that an
out-of-band discovery service (a hostcache or a local cache
that stores nodes to whichn was connected in some past
session) is able to providen with a random list of active hosts
L={n1, n2, ..., nk}, for some constantk≥ d

2
, whered denotes

the number of neighbors thatn maintains. It is important
to notice that the individual hostcaches do not have global
knowledge and therefore cannot be used for disseminating
some pre-computed overlay structure or the distances between
all node pairs to the peers.

After n obtains the listL it first attempts to establish a
connection tod/2 random nodes, whered is the degree ofn.
It is quite possible that some or all of the nodesni in L are
not able to accept any new incoming connections. This might
either happen becauseni reached its maximum degree or
becauseni went offline. In this casen will need to obtain an
additional listL from the hostcache. The next step is to find
d/2 sibling connections (nodes which have a dnMatch with
n). This is achieved by sending a Domain NamelookupDN
message (described next) to one of the existing (random)
neighbors.

Domain-Name Lookup in a DDNO Topology:We now focus
our attention on thelookupDN procedure which is used by
some noden, in order to discover othersibling nodes inN .
We model the lookupDN message (denoted asℓ) as amulticast
walker. The goal of the multicast walkerℓ is to reach some
nodem that can guide it to the destination (i.e. a sibling of
n). Note that before reachingm, ℓ may need to traverse a
number of randomly selected neighbors. This can be viewed in
Figure 3, in whichℓ takes the random itinerary[a, b, e, c, b, d].
At d however,ℓ is allowed to make an informed decision on
which neighbor to follow next (in this example node f).

This is achieved by using a special structure coined
ZoneCachethat contains information on which domains are
reachable in anr-hop radius (it will be discussed next). At the
end of this procedure,ℓ is expected to reach some nodem,
which is a sibling ofn. m then issues abroadcastmessage to
all of its own siblings. Each of the receiving nodes, including
m, will respond with aLookupOKmessage (denoted asℓ′)
if they are willing to accept new connections. Therefore node
n will end up receiving several answers out of which it will

Split-Hash Neighbor # Hops Timestamp
9A78DF Socket3 3 10000000
421CDE Socket1 2 10012000

... ... ... ...
2AB356 Socket1 2 10160000

Fig. 4. TheZoneCache Structure. It caches domain topological structure
information from lookupDN messages that traverse a given node.

attempt to establish a connection tod/2 nodes; these will be
n’s siblings.

One important problem with this approach is thatℓ might
get locked in a cycle (e.g. loopb → e → c in Figure 3).
To avoid this scenario we incorporate state information inℓ
as this also serves as an implicit mechanism to populate the
ZoneCaches alongℓ’s path. The state information included
in ℓ, includes thesplit-hash h on the domain-name of each
node thatℓ traversed (i.e.stateℓ = {h(vn), ..., h(vm)}).

ZoneCache: This is a caching structure which is deployed
locally at each node and its functionality is to guideℓ messages
to their sibling nodes. In Figure 4 we present a snapshot of
the ZoneCache structure. The first column includes the hash
of some domain-name and this information is extracted from
traversingℓ messages. The second column indicates the peer
connection that will lead a future search (denoted asℓ2) to the
corresponding destination, and the third column indicatesthe
respective cost in hops. Finally ZoneCache uses a timestamp
parameter (fourth column) in order to limit the number of
entries in the structure to a total size ofC. Once the repository
of some node becomes full the node uses the Least Recently
Used (LRU) policy to invalidate old entries.

The cache stores only the hashcodes of the nodes that
are located within anr-hop radius in order to both limit its
size and accuracy. Although neighboring ZoneCaches could
actively exchange routing updates at regular intervals, like
BGP [31], our passive caching scheme reduces significantly
the amount of transmitted message and works well in dynamic
environments.

DDNO Topology Maintenance: When a node disconnects
from the DDNO topology it does not need to send any a
priori notification to the other nodes. However, if somerandom
neighbor of n leavesN then n will either attempt to re-
establish the dropped connection or find another node from
the discovery service outlined before. On the other hand, if
somesibling of n disconnects thenn consults itsZoneCache
in order to send the new lookupDN message towards a current
sibling. It is expected thatn will discover another sibling in
only 2 hops (as a node already maintains(d

2
− 1) siblings).

V. QUERY ROUTING IN PFUSION

In this section we describe the query routing algorithms that
can be used to perform content-based searches inpFusion.
The techniques do not use any global knowledge, thus they
are completely decentralized and scale well with the size of
the network.
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A. Alternative Query Routing Techniques

Below we provide a brief description of alternative query
routing techniques evaluated in this paper. BFS is a tech-
nique widely used in P2P file sharing applications, such as
Gnutella [15]. It works by recursively forwarding the query
on each node, to all neighbors (except the sender). In order
to avoid flooding the network with queries, as the network
might be arbitrary large, each query is associated with a
Time-To-Live (TTL) field which determines the maximum
number of hops that a given query should be forwarded.
In [22] we propose and evaluate theRandom Breadth-First-
Search (RBFS)technique. RBFS improves over the naive BFS
approach by allowing each node to forward the search request
to only a fraction (0.5 in the experiments) of its peers.

Yang et al. [50] present a technique where each node
forwards a query to some of its peers based on aggregated
statistics. They compare a number of query routing heuristics
and show that theMost Results in Past (>RES)heuristic has
the best performance. In>RES a peeru forwards a search
message to thek peers which returned the most results in the
last 10 queries.

B. The Intelligent Search Mechanism (ISM)

Keys to improving the speed and efficiency of the informa-
tion retrieval mechanism is to minimize the communication
costs, that is, the number of messages sent between the peers,
and to minimize the number of peers that are queried for
each search request. In [22] we propose the Intelligent Search
Mechanism (ISM) which is a fast and efficient mechanism
for information retrieval in unstructured P2P networks. ISM
achieves reduced messaging by having each peer to profile
the query/queryhit activity of its neighboring nodes. It then
uses this knowledge to forward queries to the neighbors that
are most likely going to reply to a given query. ISM consists
of two components that run locally in each peer: i) a Profile
mechanism and ii) a RelevanceRank function.

i) Profile Mechanism: each node maintains in a repository
the T most recent queries and the corresponding queryhits
along with the number of results. Once the repository is full,
the node uses the Least Recently Used (LRU) replacement
policy to keep the most recent queries.

ii) RelevanceRank (RR) is a function used by a nodePl

to perform an online ranking of its neighbors in order to
determine to which ones to forward a queryq. To compute
the ranking of each peerPi, Pl comparesq to all queries
in the profiling structure, for which there is a queryhit, and
calculatesRRPl

(Pi, q) as follows:
RRPl

(Pi, q) =
∑

j = ”Queryhits byPi”
Qsim(qj, q)

α ∗ S(Pi, qj)

where the deployed distance metricQsim is the cosine
similarity [2] andS(Pi, qj) is the number of results returned
by Pi for queryqj . RR allows us to rank higher the peers that
returned more results.α allows us to add more weight to the
most similar queries. For example, whenα is large then the
query with the largest similarityQsim(qj , q) dominates the
formula. If we setα = 1 all queries are equally counted, while
settingα = 0 allows us to count only the number of results

q

QUERY

QUERYHIT


profile


Zone

Cache


Zone

Cache


Zone

Cache


Zone

Cache


Zone

Cache


Fig. 5. Searching in a P2P network using ISM. The profiling structure at
each node routes queries to nodes with relevant content.

returned by each peer. Note that other numeric similarity
metrics, such as Jaccard coefficient, the dice coefficient and
the inner product (listed in [37]), are also appropriate in our
setting since these can again be computed locally.

ISM works well in environments which exhibit strong de-
grees of query locality and where peers hold some specialized
knowledge. Our study on the Gnutella network shows that this
characteristic is a reasonable assumption [52]. Although we
propose the ISM mechanism for keyword-based searches, the
basic mechanism can also be used for content-based retrieval
of audio, image or video features as long as a similarity
function between the queries can be provided. Finally, in [22],
[54], we have conducted an analytical study of the RBFS
search mechanism.

C. ISM over DDNO

The existence of sibling and random links in the DDNO
topology can be further exploited in query routing. If a query
is likely to generate query hits in the local domain then the
peer can use the ISM mechanism to send the query only to
the most likely sibling nodes. We call this mode the“short”
query mode. In this situation the query is only propagated
along sibling connections, and specifically the ones chosenas
the most relevant by ISM (see Figure 5),

If the query results are not satisfactory, the query node can
then re-issue the query using both sibling and random nodes.
However the “short” query mode can be very useful in many
situations. Since all messages are sent to sibling nodes (in
the same domain), it is very likely to terminate very quickly,
especially since it likely needs a small number of hops to
explore the domain. In addition, if there is locality of interests,
local peers are more likely to have good results. Such a case
can easily come up in our distributed newspaper example: most
queries are likely to be about local news.

VI. EXPERIMENTAL EVALUATION METHODOLOGY

To validate that it is possible to obtain the benefits of
a topologically aware overlay using only local knowledge,
our experimental evaluation focuses on the following three
parameters: (i) theAggregate Tree Delay (∆T ), which is a
metric of network efficiency for a given query that spans in
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the subgraph G’, (ii) theRecall Rate, that is, the fraction of
documents each of the search mechanisms retrieves, and (iii)
the number ofMessagesconsumed in order to find the results.

To describe theAggregate Tree Delay, let G = (V, E)
denote an overlay graph with a vertex setV = {1, 2, ..., n}
and an edge setE. Queries posted inG, create a spanning tree
T which spans over the sub-graphG′ (G′ ⊆ G). Intuitively,
an efficient overlay network can improve the query latency
by minimizing the sum of latencies along the explored edges.
More formally, the goal of our overlay construction technique
is to minimize: ∆T =

∑

∀ǫ∈T

w(ǫ), where w is the latency

associated with edgeǫ in the tree T . It is important to
notice that the delay cost associated with each edge might
be different for each direction between two nodesvi and
vj (i.e. delay(vi, vj ) 6= delay(vj, vi)). This happens because
packets on the Internet follow different paths or because the
upstream and downstream bandwidth of a node is different
(e.g. Cable/ADSL Modem Users).

For theRecall Rate, we use as the baseline of comparison
the results retrieved by querying the collection in a centralized
setting (i.e. as a corpus of documents) which therefore returns
all relevant documents. We chose to implement the algorithms
that require only local knowledge (i.e. BFS, RBFS,>RES and
ISM) over Random, BinSL and DDNO topologies of the same
size and degree.

TABLE I

DOMAIN DISTRIBUTION OF THE TOP-10 DOMAINS IN A DATASET OF

244,000 IPS FOUND IN GNUTELLA .

# Domain % # Domain %

1 rr.com 10% 6 cox.net 3%

2 aol.com 8% 7 bellsouth.net 2%

3 t-dialin.net 6% 8 shawcable.net 2%

4 attbi.com 6% 9 sympatico.ca 2%

5 comcast.net 3% 10 optonline.net 1%

A. Dataset Description

We use two series of experiments based on theTREC-
LATimes [45] dataset, a document collection of randomly
selected articles that appeared on the LA Times newswire
from 1989 to 1990. The size of this dataset is 470MB
and it contains approximately 132,000 articles. These articles
were horizontally partitioned into 1000 XML documents, each
subsequently indexed using the Lucene [25] IR API. These
indexes, which are disk-based, allow the efficient queryingof
text-based sources using many IR features. We then generate
Random, BinSL and DDNO topologies of 1000 peers in which
each peer shares one or more of the 1000 documents. We
use this scheme in order to provide some degree of article
replication (see Figure 6a).

For the evaluation of the TREC-LATimes corpus we will
use, as indicated by NIST, the TREC “topics” 300-450. One
problem with the provided 150 queries is that the query
term frequency is very low and most terms are presented
only once. This is not a realistic assumption since studies
on real P2P networks (e.g. [52]) indicate that there is a high
locality of query terms. Therefore we used the 150 queries
to derive theTREC50x2 dataset, which consists of a set
a =“50 randomly sampled queries out of the initial 150
topics”. We then generated a listb of another 50 queries which
are randomly sampled out ofa. TREC50x2is then the queries
in a and b randomly shuffled and the distribution of query
terms can be viewed in Figure 6b.

B. Simulating Network Distances

Evaluating distances in network topologies requires a
dataset in which the IP latencies are not synthetic. Therefore
we base our experiments on traceroute data from theActive
Measurement Project(NLANR) [18] and ping data from the
Akamai Internet mapping infrastructure [1] (AKAMAI).

i) NLANR: This dataset contains traceroutes between 117
monitors of hosts on the Internet2 backbone. The trace snap-
shot that we used, was obtained in January 2003 and had a
raw size of 1.8 GB. From the initial set of 117 monitors we
extracted the 89 monitors which could be reversed DNS (i.e.
given their IP we obtained a DNS name). We then construct
the nxn IP-latency matrix (for all n=89 physical nodes), that
contains the latency among all monitors. Since all 89 hosts
are located at different domains, we randomly and uniformly
replicate nodes within each domain, providing therefore some
degree of host replication per domain.
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Fig. 7. Aggregate Graph Delay(∆G) for the NLANR (left) and AKAMAI (right) dataset using four different overlay topologies.

ii) AKAMAI: This dataset contains latency measurements
obtained in August 2004, from a very large number of “well-
positioned” servers to DNS servers on the Internet. In order
to obtain annxn IP-latency matrix among all DNS servers,
we use the triangle inequality to lower bound the desired
distances. More formally, lets be a server that pingsn DNS
servers in the setD. This creates a set ofn edges, each with an
associateddistance(s, d) (d ∈ D, ∀d). The triangle inequal-
ity implies that: distance(d1, d2) ≤ min(distance(s, d1) +
distance(s, d2))

Since the name of each DNS servers was anonymized in
our dataset, we utilize a real set of 244,000 domain names
that we obtained by crawling the Gnutella Network in [52].
More specifically we uniformly sample out of our initial set of
244,000 IP addresses 1000 unique addresses and then assign
these names to the anonymized DNS servers. Note that the
distribution of our sample preserves the initial distribution
closely (see Table I). Using this setting, nodes in different
domains have latencies found in the Internet while nodes in
the same domain are randomly assigned latencies in the range
[10..50]ms.

C. The pFusion Simulation Infrastructure

In order to benchmark the efficiency of the various informa-
tion retrieval algorithms over various overlay topologies, we
have implementedpFusion, using our open-sourcePeerware
system1. We usepFusionto build a decentralized newspaper
network which is organized as a network of 1000 nodes. Our
experiments are performed on a network of 75 workstations
(each hosting a number of nodes), each of which has an AMD
Athlon 800MHz-1.4GHz processor with memories varying
from 256MB-1GB RAM running Mandrake Linux 8.0 (kernel
2.4.3-20) all interconnected with a 10/100 LAN.pFusion is
written entirely in Java and comes along with an extensive
set of UNIX shell scripts that allow the easy deployment and
administration of the system. It consists of 13,500 lines ofcode
with 6500 lines devoted to the core protocol implementation,

1Available at: http://www.cs.ucr.edu/˜csyiazti/peerware.html

5000 lines to thepFusionnode and 2000 lines to topology
generators and other supplementary IO components.

Our experimental testbed consists of three components:
(i) graphGen which pre-compiles network topologies and
configuration files for the various nodes participating in a given
experiment, (ii) thepFusion client which is able to answer
queries from its local XML repository using the Lucene [25]
IR Engine, and (iii)searchPeerwhich is a P2P client that
performs queries and harvests answers back from apFusion
network. Launching a network of 1000 nodes can be done
in approximately 10-20 seconds while querying the same
network can be performed in around 250ms-1500ms.

VII. E XPERIMENTAL EVALUATION

In this section we describe a series of experiments that
investigate the effect of the Random, BinSL, and DDNO
overlay topology structure on the recall rate and the mes-
saging of the various information retrieval search algorithms
discussed in this paper. We focus on investigating if the DDNO
topology can significantly minimize the aggregate network
delay without sacrificing the recall rate.

Since the possible number of system executions can be very
large, due to varying link latencies and the fact that queries
might take different paths at the overlay, we present averages
over 10 runs. In order to present the statistical significance
of our results we additionally present the mean and the 95%
confidence intervals2 for Figure 8 and Figure 9 in Table II and
Table III, respectively.

A. Comparing DDNO with other Techniques

In the first experiment, we evaluate the performance of the
DDNO topology, and compare it to the BinSL and Random
algorithms using the a) NLANR and b) AKAMAI datasets.
We evaluate the impact of the number of landmarks on the
performance of the BinSL topology. By using more landmarks,
the number offalse positivesdecreases. This happens because

2The 95% Confidence Interval indicates that there is a 0.95 probability in
any measurement to be within the given interval.
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Fig. 8. Aggregate Tree Delayfor the evaluation of the TREC50x2 queries. In the top row we compare Random (left) and DDNO (right) topologies using
the AKAMAI dataset. In the bottom row we compare BinSL (left)and DDNO (right) topologies using the NLANR dataset.

TABLE II

THE MEAN AND THE 95%CONFIDENCE INTERVAL FOR THE PLOTS OFFIGURE 8.

Algorithm ∆T (Random-Akamai) ∆T (DDNO-Akamai) ∆T (BinSL-NLANR) ∆T (DDNO-NLANR)

BFS 1, 241, 618± 51, 222 698, 932± 21, 228 213, 073± 4, 603 159, 699± 9, 958

RBFS 357, 071± 16, 900 247, 667± 14, 555 77, 055± 2, 285 58, 580± 2, 305

>RES 322, 849± 7, 871 304, 757± 11, 344 83, 759± 2, 659 82, 989± 2, 837

ISM 536, 361± 24, 822 394, 160± 24, 041 111, 236± 4, 301 77, 869± 5, 787

we get fewer collisions in the landmark codes of hosts that are
not topologically close to each other. We use the centralized
SL algorithm as a benchmark to compare against.

In Figure 7, we calculate the sum of the delaysw associated
with all edges in the respective graphsG (1000 peers each
with an average degree of 6). This sum is more formally
defined as∆G =

∑

∀ǫ∈G

w(ǫ), wherew is the latency of each

edge ǫ in the graphG. We use this metric, instead of the
Aggregate Delay∆T , as it is independent of the deployed
search technique. In BinSL, we first randomly sample out of
the original network the set of landmarks. Note that in a real
setting, peers would have a predefined list of landmarks (i.e.
globally spread HTTP or DNS servers). The figures indicate

that by using no landmarks, the BinSL topology is essentially
a Random topology. This happens because a node selects all
its connections at random which makes∆G of the Random
and BinSL topologies identical. The figure shows that by
adding a few landmarks (i.e. 1-10),∆G for the BinSL topology
decreases substantially, but after a point∆G decreases at a
lower rate. Therefore by selecting an arbitrary large number
of landmarks may not be very efficient as each landmark
probing comes with an additional network cost and because
the ∆G parameter of the graph does not significantly drop.
Figure 7 also shows that the lower bound provided bySL
is less than what other topologies achieve, butSL is not
feasible in practice as it requires global knowledge (i.e. the full
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nxn matrix). In the experiments presented in the subsequent
subsections, we set the number of landmarks to 20. The reason
why the graphs based on the NLANR latencies have a lower
∆G that those in the AKAMAI latencies, is that NLANR
measurements are between Internet2 hosts among which the
latency is very low. An extensive experimental comparison of
DDNO, BinSL and Random, which includes scalability, failure
and bootstrapping experiments, can be found in [53].

B. Minimizing Network Delays

In our second experiment, we investigate ifpFusion can
succeed in minimizing the Aggregate Delay∆T of a query,
while in the Section VII-C, we will show that this does not
affect the recall rate and it also does not increase messaging.

In the top row of Figure 8 we compare the following cases:
i) a Random topology with BFS query routing (essentially the
Gnutella scenario), ii) a Random topology with an efficient
query mechanism (we experiment with ISM,>RES, and
RBFS), iii) a DDNO topology with BFS query routing, and
iv) the pFusionarchitecture that combines a DDNO topology
and efficient query routing using the AKAMAI dataset to
create the network and answering the TREC50x2 queryset.
In the BFS case, we configure each query messages with
a TTL parameter of five since this technique is consuming
extraordinary amounts of messages. With this setting, query
messages are able to reach 859 out of the 1000 nodes.3

Therefore it was expected that BFS’s recall rate would be
less than the recall rate obtained by evaluating the whole
dataset in a centralized setting. The rest techniques (i.e.RBFS,
ISM and >RES), use a TTL of 6 as they offer reduced
messaging, which allows us to explore the network graph
deeper while maintaining low messaging. Finally, the average
time to perform a query for the BFS case is in the order of
1.5 seconds but results start streaming back to the query node
within the first few milliseconds. By comparing Figure 8 (top-
left) with Figure 8 (top-right) can reduce the∆T parameter by
a factor of three. Figure 8 (bottom-left) with Figure 8 (bottom-
right) shows that DDNO also has significant benefits against
BinSL. The figures also indicate that the improved search
techniques ISM,>RES and RBFS have significant savings
over the naive BFS approach.

C. Maintaining High Recall Rates and Low Messaging

So far we have seen that by using a DDNO topology we
are able to reduce the∆T parameter. However this single
parameter is not enough in the context of information retrieval
applications, as these applications are required to returnthe
most relevant documents. Furthermore, if some search tech-
nique always explored the shortest latency neighbors then the
∆T parameter would be minimal but the query would with
very high probability get locked in some region and would
not explore the larger part of the network graph. This would
consequently reduce the recall rate which is not desirable.In
Figure 9, we plot the recall rate required by the different search

3With a TTL of 6 and 7, we would be able to reach 998 and 1000 nodes
at a cost of8, 500 messages/query and10, 500 messages/query respectively.

algorithms. The figures indicate that we canmaintain high
levels of recall rate while keeping the∆T parameter low(as
shown in the previous subsection).

In the same figures we can also observe the effectiveness of
each search technique. More specifically, BFS requires almost
2.5 times more messages than the other techniques. The ISM
search technique on the other hand, learns from its profiling
structure and guides the queries to the network segments that
contain the most relevant documents. On the other hand both
RBFS’s and>RES’s recall rates fluctuate, which indicates that
>RES may behave as bad as RBFS if the queries don’t follow
some repetitive pattern.

Finally, we note that Random topologies with BFS require
slightly more messages (≈10%), and consequently are able to
score slightly higher recall rates (in our experiments≈0-5%)
using the same parameter settings because fewer query paths
are short-circuited. A query q is short-circuited if its TTL
parameter hasn’t reached zero, but it is discarded because the
same query with a larger TTL already passed from a given
node. Note that such a query could explore some additional
network segment with its remaining TTL value. However in
thepFusionapproach (DDNO and ISM), the recall rate is not
affected because ISM tries to both explore the largest and most
relevant segments of the network. This happens because short-
circuited areas are penalized by RelevanceRank and explored
less frequently.

In addition to theTREC50x2dataset, we also experimented
with two other querysets:TREC100, a set of 100 randomly
sampled queries, out of the initial 150 TREC queries, and
TREC10x10, a set of 10 randomly sampled queries, which are
executed 10 times consecutively. In both cases we observe a
similar behavior and therefore omit these results for brevity.
Note that the TREC100 contains a low locality of reference
in its queries, but this does not seem to affect significantlythe
learning process of the ISM search algorithm.

Finally, we observe that in all curves of Figures 8 and 9,
the standard deviation to within 95% confidence, is in most
cases 4-7%.

Our experimental results show that random overlay topolo-
gies make information retrieval algorithms, proposed in recent
literature, significantly more resource demanding and slow. In
particular, the Aggregate Tree Delay graphs in Figure 8, shows
that random topologies are twice as expensive, in terms of
delay along the query path, as the optimized DDNO topology.
On the contrary, the minimization of delay that is achieved by
DDNO, does not affect the recall rate in such systems, as this
is shown by Figure 9.

VIII. C ONCLUSIONS

We considered and evaluated the impact of the use of
topologically aware overlay networks on the performance
of fully distributed P2P information retrieval techniques.
Specifically, we show that it is possible to efficiently organize
the overlay network using only local information, in order to
significantly improve the query latency. We also show how to
take advantage of this organization when routing the queries
in the network. Our experimental results demonstrate that
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Fig. 9. Recall Rate (top row) andMessages(bottom row) for the evaluation of the TREC50x2 over Random (left column) and DDNO topologies (right
column) using the AKAMAI dataset. For the NLANR dataset we obtained similar results and omitted their presentation due to space limitations.

TABLE III

THE MEAN µ AND THE 95% CONFIDENCE INTERVAL FOR THE PLOTS OFFIGURE 9.

Algorithm Recall (Rand-Akamai) Recall (DDNO-Akamai) Msgs (Rand-Akamai) Msgs (DDNO-Akamai)

BFS 82.18± 5.45 79.11 ± 4.42 4, 603± 217 4, 133 ± 137

RBFS 48.19± 5.53 50.29 ± 5.39 1, 409± 49 1, 450 ± 82

>RES 44.66± 5.32 59.48 ± 5.54 1, 554± 22 1, 632± 56

ISM 75.00± 5.96 74.42 ± 5.24 1, 522± 72 1, 764 ± 129

our approach optimizes many desirable properties such as
aggregate delays, recall rates and the number of messages.
We believe that our techniques are simple to enable seamless
integration into existing overlay systems with minimal
changes.
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